

UT TO SOUTH FORK FINAL MONITORING REPORT **YEAR 2 OF 5** 2007

EEP Project # 435 Alamance County, North Carolina

> **Original Design Firm:** ARCADIS G&M of North Carolina, Inc. 801 Corporate Center Drive, Suite 300 Raleigh, NC 27607

Raleigh, NC 27699

Monitoring Firm: ENGINEERING GROUP 1025 Wade Avenue Raleigh, NC 27605 Phone: (919) 789-9977 Project Manager: Phillip Todd ptodd@sepiengineering.com

Executive Summary

The North Carolina Ecosystem Enhancement Program (EEP) restored the UT to South Fork in 2004. This project is located in the southern portion of Alamance County, NC. The different reaches flow through former pasture areas and wooded sections. Prior to restoration, cattle had unlimited access to the stream channels which created areas of severe bank erosion and loss of vegetation. Since the restoration has been completed, the livestock have been fenced out of the stream with the exception of a few crossings that are used throughout the year to move the cattle from one field to another.

There were several goals for this stream and buffer restoration project. Goals of the stream project included: reducing the bank erosion; reducing nutrient runoff on the site; stabilizing stream channel banks by planting vegetation; and, helping the stream reach its equilibrium though the proper design ratios for dimension, pattern, and profile.

This report documents the data collected for Year 1 monitoring. Current monitoring for the site consists of evaluating both stream morphology and riparian vegetation for all three monitoring reaches. The stream monitoring included a longitudinal survey, cross section surveys, pebble counts, problem area identification, and photo documentation. A plan view featuring bankfull, edge of water, and thalweg lines as well as problem area locations was developed from the longitudinal survey. The vegetation assessment included a tally of planted vegetation in permanent vegetation plots, vegetation-specific problem area identification (i.e. bare areas and invasive species), and photo documentation. A vegetation problem area plan view was developed from the problem area identification. All morphological data, vegetation plot and pebble counts, cross section surveys, the longitudinal profile, and the plan view features were compared between monitoring years to assess project performance.

All reaches remained geomorphically stable between Monitoring Years 1 and 2, with the exception of several areas of aggradation occurring in riffle sections of all three reaches. However, Reach 1 is the only reach where this problem may have contributed to any noticeable geomorphic change (i.e., increase in riffle length and slope), probably due to the smaller size of Reach 1. There are several areas with stream problems, especially in Reaches 1 and 2, where structures are failing. Several of the structures had water flowing under or piping around stones. Several more structures had loose stones or stones that have already been displaced. In addition, several rootwads of Reaches 1 and 2 have some portion of bank caving in or piping behind the structure or around the footing. There were small amounts of bank erosion in all reaches, but no areas were considered severe. There is good herbaceous vegetation growth along all of the monitored stream reach. In many areas, fescue was prevalent, preventing the establishment of the planted bare root trees. Although not considered to be problem now, Japanese honeysuckle was noted in several areas. There are several concern areas with regard to the vegetation plots. The number of stems/acre in VP #1, 2, 4 and 5 remain below the Year 5 goal of 260 stems/acre. The stem/acre for VP #3 is 280 stems/acre. Overall survivability from Year 1 to Year 2 was good (81% for all counted vegetation) despite the area being in a drought.

TABLE OF CONTENTS

1.0	PROJEC	CT BACKGROUND	
	1.1	Project Objectives.	
	1.2	Project Structure, Restoration Type, and Approach	
	1.3	Project Location and Setting	
	1.4	History and Background	4
2.0	PROJEC	CT MONITORING METHODOLOGY	5
	2.1	Vegetation Methodology	5
	2.2	Stream Methodology	5
		2.2.1 Longitudinal Profile and Plan View	5
		2.2.2 Permanent Cross Sections	6
		2.2.3 Pebble Counts	6
	2.3	Photo Documentation	6
3.0	PROJEC	CT CONDITIONS AND MONITORING RESULTS	7
	3.1	Vegetation Assessment	7
		3.1.1 Soils Data	7
		3.1.2 Vegetative Problem Area Plan View	7
		3.1.3 Stem Counts	7
	3.2	Stream Assessment	8
		3.2.1 Longitudinal Profile and Plan View	9
		3.2.2 Permanent Cross-Sections	9
		3.2.3 Pebble Counts	9
		3.2.4 Stream Problem Areas	
	3.3	Photo Documentation	
4.0	RECOM	IMENDATIONS AND CONCLUSIONS	
REFERI	ENCES		12
TARIF	S		
Table I	B Project R	estoration Components	1
Table II	Project A	Activity and Reporting History	
Table II	I Project	Contact Table	4
Table IV	Project	Background Table	
Table V	Prelimit	parv Soil Data	
Table V	I Vegetat	ive Problem Areas	. Appendix A3
Table V	II Stem c	ounts for each species arranged by plot	Appendix A3
Table V	III Verif	ication of Bankfull Events	
Table IX	K BEHI 2	and Sediment Export Estimates (not included in this year's data)	
Table X	Stream F	Problem Areas	Appendix B3
Table X	I Catego	rical Stream Feature Visual Stability Assessment	
Table X	II Baseli	ne Morphology and Hydraulic Summary	Appendix B3
Table X	III. Mori	phology and Hydraulic Monitoring Summary	Appendix B3
	- 1		

FIGURES

Figure 1: Vicinity Map	. 2
Figure 2: Reaches of Restoration Monitoring	. 3

APPENDICES

Appendix A	
Appendix A1: Photolog - Vegetation Problem Areas	A1
Appendix A2: Photolog - Vegetation Plots	A2
Appendix A3: Vegetation Data Tables	A3
Appendix B	
Appendix B1: Photolog – Stream Problem Areas	B1
Appendix B2: Photolog - Cross Sections and Photo Points	B2
Appendix B3: Stream Data Tables	B3
Appendix B4: Stream Cross Sections	B4
Appendix B5: Stream Longitudinal Profile	B5
Appendix B6: Stream Pebble Counts	B6

Appendix C: Plan View Sheets

1.0 PROJECT BACKGROUND

1.1 <u>Project Objectives</u>

The goal of this stream restoration project is to improve water quality in the Cape Fear River Basin. The UT to South Fork is typical of other streams in this area, exhibiting instability and degradation in response to current and historical land use practices. The goal of improving water quality will be accomplished by re-establishing a stable dimension, pattern, and profile to the stream. Stabilization of the streambed and banks will reduce the amount of sediment entering the river basin and re-establishment of a permanent vegetated riparian buffer (consisting of native species) will help decrease nutrient input. This buffer will provide shading for wildlife habitat within the stream and along the stream buffer.

1.2 **Project Structure, Restoration Type, and Approach**

All four restoration subreaches were classified as E4/1 type streams prior to restoration, and exhibited instability that was attributed to excessive cattle access and other current and past land-use practices. The restoration of restoration subreaches 1 and 2 involved channel relocation with adjusted dimension, pattern, and profile resulting in a Priority Level I approach. Restoration for subreach 3 most closely resembled a Priority II and III restoration approach while restoration for subreach 4 most closely resembled a Priority I and III restoration approach. Table I details the specific restoration components employed on each restoration reach.

Table I. Project Restoration Components								
UT to South Fork/EEP Project Number 435								
Project Segment or	Project Segment or Mitigation Linear Footage or							
Reach ID**	Туре	Approach*	Acreage Stationing*	Comment				
Subreach 1	Restoration	PI	10+00 to 26+03	New channel construction				
Subreach 2	Restoration	P I, PII	26+03 to 33+13	Modified pattern, dimension & profile				
	Enhancement							
Subreach 3	Level I	P II, P III	33+13 to 42+00	Modified dimension & profile				
Subreach 4	Restoration	P I, P II	42+00-to 70+37	Modified pattern, dimension & profile				

Note: "P" refers to Priority Level.

"*" - Determinations made from the Restoration Design Report for the project.

"**" – For monitoring purposes Reach 1 is Design Subreach 1, Reach 2 combines portions of both Design Subreach 2 and Design Subreach 3, and Reach 3 is Design Subreach 4.

1.3 <u>Project Location and Setting</u>

This project is near Snow Camp, North Carolina in south-central Alamance County. To reach the site from Raleigh, go west on US 64 towards Siler City. Take the exit for NC 87 and turn right, heading north. Take a left onto Chapel Hill-Greensboro Road. At the intersection with Lindley Mill Road take a left towards the community of Sutphin. The site is near the intersection with Green Hill Road before the Chatham County line. To access Reach 1, turn left onto Green Hill Road, you will cross the beginning of that reach. Reaches 2 and 3 can be accessed off of Lindley Mill Road. Figure 1 shows the location of the site and Figure 2 shows the location of each reach surveyed.

The project lies in a mostly open, abandoned agricultural field where cattle once had unlimited access to the stream. Since restoration, the stream has been fenced off, and cattle do not have access to the channel. The surrounding pastures are used for cattle grazing or crop production (hay). Less than 25% of the stream restoration area lies within a sparsely forested buffer area. The surrounding topography is gentle rolling hills.

UT to South Fork EEP Project Number 435 February 2008

UT to South Fork EEP Project Number 435 February 2008 SEPI Engineering Group Final Report Monitoring Year 2 of 5

1.4 <u>History and Background</u>

Tables II, III, and IV provide the project history, contact information for the contractors on the project, and the project background/setting, respectively.

Table II. Project Activity and Reporting History								
UT to South Fork/EEP Project Number 435								
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery					
Restoration Plan			September 2002					
Final Design - 90%	-							
Construction	-							
Temporary S&E mix applies to entire project area								
Permanent seed mix applies to reach/segments 1&2	Raw data being acquired by EEP and will be included in the 2008 monitoring report for the site.							
Containerized and B&B plantings for reach/segments 1&2								
Mitigation Plan/ As-built (Year 0 Monitoring - baseline)								
Year 1 monitoring	December 1, 2006	June 1, 2006	November 2006					
Year 2 monitoring	December 1, 2007	October 2007	December 1, 2007					
Year 3 monitoring	December 1, 2008							
Year 4 monitoring	December 1, 2009							
Year 5 monitoring	December 1, 2010							
Year 5+ monitoring								

Table III. Project Contact Table					
UT to South F	ork/EEP Project Number 445				
Designer	ARCADIS G&M				
	801 Corporate Center Drive, Suite 300				
Raleigh, NC 27607					
Construction Contractor	*				
Planting Contractor	*				
Seeding Contractor	*				
2006 & 2007 Monitoring	SEPI Engineering Group				
Performers	1025 Wade Avenue				
	Raleigh, NC 27607				
	Phillip Todd (919) 789-9977				
Stream Monitoring POC	Ira Poplar-Jeffers (919) 789-9977				
Vegetation Monitoring POC	Phil Beach (919) 789-9977				
Wetland Monitoring POC	N/A				

*Raw data being acquired by EEP and will be included in the 2008 monitoring report.

Table IV. Project Background Table							
UT to South Fork/EEP Project Number 445							
Project County	Alamance County, NC						
Drainage impervious cover estimate (%)	5						
Stream Order	1						
Physiographic Region	Piedmont						
Ecoregion	Carolina Slate Belt						
Rosgen Classification of As-built	E						
Cowardin Classification	N/A						
	Georgeville-Heron-						
Dominant soil types	Alamance & Orange-						
	Efland-Herndon						
Peferance site ID	UT Wells Creek &						
Reference site ID	UT Varnal Creek						
USGS HUC for Project and Reference	03030002 Haw River						
NCDWQ Sub-basin for Project and	03 04 06						
Reference	03-04-00						
NCDWQ classification for Project and	C NSW						
Reference	C, NSW						
Any portion of any project segment 303d							
listed?	110						
Any portion of any project segment							
upstream of a 303d listed segment?	110						
	N/A						
Reasons for 303d listing or stressor	1011						
% of project easement fenced	99						
% of project easement demarcated with	0						
bollards (if fencing absent)							

2.0 PROJECT MONITORING METHODOLOGY

2.1 <u>Vegetation Methodology</u>

The following methodology was used for the stem count. The configuration of the vegetation plots was marked out with tape to measure 10 meters by 10 meters (or equivalent to 100 square meters) depending on buffer width. The planted material in the plot was marked with flagging. The targeted vegetation was then identified by species and a tally of each species was kept and recorded in a field book.

2.2 <u>Stream Methodology</u>

The project monitoring for the stream channel included a longitudinal survey, cross-sectional surveys, pebble counts, problem area identification, and photo documentation. These measurements were taken at each reach. The stationing was based on thalweg. The methodology for each portion of the stream monitoring is described in detail below.

2.2.1 Longitudinal Profile and Plan View

A longitudinal profile was surveyed for each reach with a Nikon DTM-520 Total Station, prism, and a TDS Recon Pocket PC. The heads of features (i.e., riffles, runs, pools, and glides) were surveyed, as well as the point of maximum depth of each pool, boundaries of problem areas, and any other significant slope-breaks or points of interest. At the head of each feature and at the maximum pool depth, thalweg, water surface, edge of water, left and right bankfull, and left and right top of bank (if different than bankfull) were surveyed. All profile measurements were calculated from this survey, including channel and valley length and length of each feature, water surface slope for each reach and feature, bankfull

slope for the reach, and pool spacing. This survey also was used to draw plan view figures with Microstation v8 (Bentley Systems, Inc., Exton, PA) for each reach, and all pattern measurements (i.e. meander length, radius of curvature, belt width, meander width ratio, and sinuosity) were measured from the plan view. Stationing was calculated along the thalweg.

2.2.2 Permanent Cross Sections

Four permanent cross sections (two riffles and two pools) were surveyed at Reach 1. Two permanent cross sections (one riffle and one pool) were surveyed at Reach 2, and six permanent cross sections (3 riffles and 3 pools) were surveyed at Reach 3. The beginning and end of each permanent cross section were originally marked with a wooden stake and metal conduit. Cross sections were installed perpendicular to the stream flow. Each survey noted all changes in slope, tops of both banks, left and right bankfull, edges of water, thalweg, and water surface. Before each cross section was surveyed, bankfull level was identified, and a quick bankfull area was calculated by measuring a bankfull depth at 1-foot intervals between the left and right bankfull locations and adding the area of each interval block across the channel. This rough area was then compared to the North Carolina Rural Piedmont Regional Curve-calculated bankfull area to ensure that bankfull was accurately located prior to the survey. The cross sections were then plotted and Monitoring Year 2 monitoring data was overlain on Monitoring Year 1 data for comparison.. All dimension measurements (i.e. bankfull width, floodprone width, bankfull mean depth, cross sectional area, width-to-depth ratio, entrenchment ratio, bank height ratio, wetted perimeter, and hydraulic radius) were calculated from these plots and compared to the Monitoring Year 1 data.

2.2.3 Pebble Counts

A modified Wolman pebble count (Rosgen 1994), consisting of 50 samples, was conducted at each permanent cross section. The cumulative percentages were graphed, and the D50 and D84 particle sizes were calculated and compared to Monitoring Year 1 data.

2.3 <u>Photo Documentation</u>

Permanent photo points were established during Monitoring Year 1. A set of three photographs (facing upstream, facing downstream, and facing the channel) were taken at each photo point with a digital camera. Two photographs were taken at each cross-section (facing upstream and downstream). A representative photograph of each vegetation plot was taken at the designated corner of the vegetation plot and in the same direction as the Monitoring Year 1 photograph. An arrow was placed on the designated corner of each vegetation plot on the plan view sheets to document the corner and direction of each photograph. Photos were also taken of all significant stream and vegetation problem areas.

3.0 PROJECT CONDITION AND MONITORNING RESULTS

3.1 <u>Vegetation Assessment</u>

3.1.1 Soils Data

Table V. Preliminary Soil Data							
Series	Max	% Clay on	K	Т	OM %		
	Depth (in.)	Surface					
Chewacla (Cd)	80	5.0 - 20.0	0.48	*	1.0 - 4.0		
Efland (EaB2)	86	<<<<< Information unavailable >>>>>>					
Georgeville (GaB2)	63	5.0 - 27.0	0.48	*	0.5 - 2.0		
Georgeville (GbD3)	63	27.0 - 35.0	0.35	*	0.5 - 2.0		
Herndon (HdB2)	68	5.0 - 27.0	0.48	*	0.5 - 1.0		
Local Alluvial (Lc)	Local Alluvial (Lc) <						
Orange (ObB2)	55	10.0 - 27.0	0.44	*	1.0 - 3.0		
Orange (ObC2)	55	10.0 - 27.0	0.44	*	1.0 - 3.0		

* The soils information was not available from the Natural Resources Conservation Service (NRCS)

3.1.2 Vegetative Problem Area Plan View

Overall, there appears to be good vegetation along the stream channel. There are some bank erosion areas, and these areas are described in the stream problem area section of the report (See Section 3.2.4).

There is good herbaceous vegetation growth along all of the monitored stream reach. In many areas, fescue was prevalent, preventing the establishment of the planted bare root trees. This was particularly noted in Vegetation Plot (VP) #2 where no bare roots were noted. VP #1 only has 3 trees in it. In VP #4, only a single bare root of green ash was located although there are several volunteers of red maple. The vegetative plots and problem areas are shown on the plan view sheets in Appendix C.

Although not considered to be problem now, Japanese honeysuckle was noted in several areas. It was noted in VP #1, #4, #5, #6, and #7 (the side of the plot opposite the stream). These are "watch" areas.

3.1.3 Stem Counts

The planted bare root stems in Reach 1 remain a concern. No stems were located in VP #2, one stem in VP #4 and few stems were located in VP #1, 3, and 5. The number of stems/acre in VP #1, 2, 4 and 5 are already below the Year 5 goal of 260 stems/acre. VP #3 remains a "watch" area as the stem/acre was 280. It was noted that outside of the vegetation plots for Reach 1, going downstream, and VP# 5 in Reach 2, the number of bare root stems remain substantial.

The overall survival from Monitoring Year 1 to Year 2 was 81% among all plants. This number is good considering the area is in a drought for 2007.

It should be noted that there were several species for which several-to-many additional stems were counted within a given plot relative to the Monitoring Year 1 count. These additional stems were assumed to be volunteers and were not included in the survival calculations. The species were *Cornus ammomum* (VP #6 and 7), *Acer negundo* (VP #7), *Betula nigra* (VP #8, 9, and 12), *Diospyros virginiana* (VP #6 and 11), *Fraxinus pennsylvanica* (VP #1, 4, and 12), *Symphoricarpos orbiculatus* (VP #10), *Platanus occidentalis* (VP #6 and 7), *Quercus michauxii* (VP #9), and *Ulmus americana* (VP #12). In addition, the following species were found in plots

but were assumed to be volunteers because they were apparently not found during Monitoring Year 1: *Liquidambar styraciflua* (VP #3, 7, 9, 10, and 12), *Pinus taeda* (plots 9, 10, and 12), *Myrica cerifera* (plot 9), *and Celtis laevigata* (plot 10). SEPI believes that *Symphoricarpos orbiculatus* was accidentally misidentified as *Hypericum* spp. during Monitoring Year 1. This was corrected in the Monitoring Year 2 stem counts table (Table VII).

3.2 <u>Stream Assessment</u>

Considering the 5 year timeframe of standard mitigation monitoring, restored streams should demonstrate morphologic stability in order to be considered successful. Stability does not equate to an absence of change, but rather to sustainable rates of change or stable patterns of variation. Restored streams often demonstrate some level of initial adjustment in the several months that follow construction and some change/variation subsequent to that is to also be expected. However, the observed change should not indicate a high rate or be unidirectional over time such that a robust trend is evident. If some trend is evident, it should be very modest or indicate migration to another stable form. Examples of the latter include depositional processes resulting in the development of constructive features on the banks and floodplain, such as an inner berm, slight channel narrowing, modest natural levees, and general floodplain deposition. Annual variation is to be expected, but over time this should demonstrate maintenance around some acceptable central tendency while also demonstrating consistency or a reduction in the amplitude of variation. Lastly, all of this must be evaluated in the context of hydrologic events to which the system is exposed over the monitoring period.

For channel dimension, cross-sectional overlays and key parameters such as cross-sectional area and the channel's width to depth ratio should demonstrate modest overall change and patterns of variation that are in keeping with above. For the channels' profile, the reach under assessment should not demonstrate any consistent trends in thalweg aggradation or degradation over any significant continuous portion of its length. Over the monitoring period, the profile should also demonstrate the maintenance or development of bedform (facets) more in keeping with reference level diversity and distributions for the stream type in question. It should also provide a meaningful contrast in terms of bedform diversity against the pre-existing condition. Bedform distributions, riffle/pool lengths and slopes will vary, but should do so with maintenance around design/As-built distributions. This requires that the majority of pools are maintained at greater depths with lower water surface slopes and riffles are shallow with greater water surface slopes. Substrate measurements should indicate the progression towards, or the maintenance of, the known distributions from the design phase.

In addition to these geomorphic criteria, a minimum of two bankfull events must be documented during separate monitoring years within the five year monitoring period for the monitoring to be considered complete. Table VIII documents all bankfull events recorded since the start of Monitoring Year 1.

Table VIII. Verification of Bankfull Events - UT to South Fork								
Date of Data Collection	Date of Occurrence	Method	Photo # (if available)					
1/9/2007	Unknown	Crest Stage Gauge measurement of approximately 7" on stick (bottom of stick at bkf).						
4/5/2007	Unknown	Crest Stage Gauge measurement of 16" (bottom of gauge 12" below bkf).						
6/4/2007	6/3/2007 – 6/4/2007	According to NOAA National Weather Service daily climate data, approximately 1.45" of precipitation fell over the listed two day period. 1" of this fell on 6/3. An additional 0.4" fell on 6/5/2007. It was assumed, but not confirmed, that this event resulted in a bankfull flow.	No Photo.					

3.2.1 Longitudinal Profile and Plan View

The overall water surface slopes of the three reaches appear stable. In Reach 1, the median riffle slope and length have both increased enough since Monitoring Year 1 to cause some concern (Table XIII, Appendix B). This trend was probably the result of measurement sensitivities in such a small channel, riffle aggradation also may have contributed the trend. Additionally, the median pool spacing has decreased significantly both in Reaches 1 and 2, and there was a slight decrease in pool length in Reach 2 (Table XIII, Appendix B). It appears that this trend is most likely the result of differences between surveys by different performers. For example, there are a couple of sections of Reach 1 (e.g., a series of pools starting at Station 14+46), and at least one in Reach 2 starting at Station 15+47, where there are several pools in a row that were grouped into one feature during Monitoring Year 1 and were divided into separate features during Monitoring Year 2. The resulting effect was the replacement of one large pool length value from Monitoring Year 1 with several smaller values from Monitoring Year 2. This change between the two monitoring years artificially decreases the median pool length and spacing values for Monitoring Year 2.

However, several more pools were documented in the Monitoring Year 2 data along Reaches 1 and 2 where pools were not documented in Monitoring Year 2. It is uncertain whether this result is indicative of different decisions in the field toward what constitutes a pool, or if extra pools are forming in the riffles. It is unlikely that the latter is the case, based on the consistency of the longitudinal profiles of both reaches between Monitoring Years 1 and 2. In fact, this consistency holds true for all three reaches. The pools and riffles of Reach 3 appear stable. Additionally, the stream pattern appears stable in all three reaches, and the plan view overlays remain consistent between monitoring years. The longitudinal profile and stream monitoring plan views are shown in Appendix B.

3.2.2 Permanent Cross Sections

All Reach 1 cross sections overlay nicely and have remained stable between monitoring years. Cross section #4 has filled in slightly on stream-right due to normal point bar development.

Both of the Reach 2 cross sections overlay nicely, although Monitoring Year 1's elevations had to be adjusted slightly (+0.13 ft to all points) for cross section #6 to overlap. However, the dimension has remained stable, and it is concluded that this was just a survey error.

All Reach 3 cross sections have remained stable and overlay nicely, except for cross section #10, which appears laterally out-of-line. However, this result was most likely a survey error as the stream channel shows no sign of recent migration in this section. Additionally, all of the elevations along Monitoring Year 1 cross section #9 were adjusted 0.13 feet higher to align with the Monitoring Year 2 survey. However, the dimension remained stable, and it is concluded that this was the result of a survey error as well.

No cross sections have specific problem areas associated with them. However, there is a bank erosion (right) located just downstream of cross section #4 in Reach 1. This erosion has not affected the dimension of the cross section, but the area should be observed closely during future monitoring years to track any changes. All cross-section graphs are located in Appendix B.

3.2.3 Pebble Counts

Pebble counts in Reach 1 show a dramatic increase in silt percentages across the entire reach between Monitoring Years 1 and 2. This result makes sense, to a degree, because aggradation (i.e. fine sediment deposition) is a stated problem within the reach. Soon, the channel should reach a stable state, and the

UT to South Fork EEP Project Number 435 February 2008 9

bed materials should coursen over time, especially in the riffles. The fine particle source is unknown, but it is likely that it is associated with the general agricultural land use of the watershed upstream of this reach. It is unlikely that bank erosion within the Reach 1 is contributing much to this result because a very low percentage of the banks are eroding in this reach.

Pebble counts in Reach 2 show a general increase in the silt/clay size class, a general decrease in the sand size classes, and an increase in the size classes between medium gravel and large cobble between Monitoring Years 1 and 2. This trend indicates that the bed materials are coarsening in general, but there is an upstream source of silt deposition as in Reach 1.

Reach 3 shows the same trend as in Reaches 1 and 2 (i.e., definite increase in silt percentages between Monitoring Years 1 and 2), but the percentages of other size classes remained very similar between monitoring years. The only exception to this trend was with cross section #10 where a coarsening of bed materials was observed between monitoring years. It is unclear how to explain this trend at a pool (i.e., depositional) feature, unless there is significant scouring or flushing of the stream bed at this cross section. The pebble count data is located in Appendix B.

3.2.4 Stream Problem Areas

Aggradation in riffle sections remains fairly prominent in all three restoration reaches. In many cases, this aggradation may not be a problem as the stream appears to be narrowing to a stable dimension where it appears the riffle sections were built too wide. However, in some cases, the aggradation is a result of grass or cattails growing in the channel substrate and retaining excess fine sediments. There is some bank erosion in all reaches, but there are no areas of severe status, and many areas appear to be healing over. Many of the stone structures (i.e. cross vanes and j-hooks) in Reaches 1 and 2 have water piping around or under the structure and/or have stones that are loose or have already been displaced. Some of these structures may require maintenance. In addition, several rootwads on Reaches 1 and 2 have problems with the soil caving in behind the structure or around the footing. In some cases, this instability may just be the result of the ground settling after installation, but in several cases it appears that there is water piping through the structure at certain times, a more serious problem. The structures in Reach 3 appear stable overall. Problem areas that were observed in the field were marked on the plan sheets in Appendix B. The stream problem areas, station numbers, and respective probable causes.

Table XI a. Categorical Stream Feature Visual Stability Assessment									
	UT to South Fork								
Segment/Reach: 1 (1140 linear feet)									
Feature Initial MY-01 MY-02 MY-03 MY-04 MY-05									
A. Riffles	100%	80%	71%						
B. Pools	100%	80%	90%						
C. Thalweg	100%	85%	88%						
D. Meanders	100%	87%	87%						
E. Bed General	100%	92%	87%						
F. Bank Condition	100%	98%	98%						
G. Vanes / J Hooks etc.	100%	58%	91%						
H. Wads and Boulders	100%	50%	56%						

Table XI b. Categorical Stream Feature Visual Stability Assessment								
UT to South Fork								
Segment/Reach: 2 (1022 linear feet)								
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05		
A. Riffles	100%	91%	83%					
B. Pools	100%	90%	100%					
C. Thalweg	100%	94%	93%					
D. Meanders	100%	79%	98%					
E. Bed General	100%	87%	82%					
F. Bank Condition	100%	98%	99%					
G. Vanes / J Hooks etc. 100% 71% 97%								
H. Wads and Boulders	100%	27%	77%					

Table XI c. Categorical Stream Feature Visual Stability Assessment							
UT to South Fork							
Segment/Reach: 3 (1024 linear feet)							
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05	
A. Riffles	100%	90%	84%				
B. Pools	100%	91%	88%				
C. Thalweg	100%	88%	100%				
D. Meanders	100%	75%	97%				
E. Bed General	100%	89%	90%				
F. Bank Condition	100%	93%	98%				
G. Vanes / J Hooks etc.	100%	100%	100%				
H. Wads and Boulders	100%	90%	100%				

3.3 Photo Documentation

Photos taken of the vegetation problem areas and photos of the vegetation plots are in Appendix A. Stream problem area photographs are provided in Appendix B. The photographs taken at the marked photo point locations and at the cross-sections are provided in Appendix B.

4.0 RECOMMENDATIONS AND CONCLUSIONS

All reaches remained geomorphically stable between Monitoring Years 1 and 2, with the exception of several areas of aggradation occurring in riffle sections of all three reaches. However, Reach 1 is the only reach where this problem may have contributed to any noticeable geomorphic change (i.e., increase in riffle length and slope), probably due to the smaller size of Reach 1. All other plan, profile, and pattern factors appear stable between monitoring years. There are several areas with stream problems, especially in Reaches 1 and 2, where structures are failing. Several of the structures had water flowing under or piping around stones. Several more structures had loose stones or stones that have already been displaced. In addition, several rootwads of Reaches 1 and 2 have some portion of bank caving in or piping behind the structure or around the footing. The most severe of these problem structures (i.e., colored "red" on the plan views) may require maintenance, and these areas should be further evaluated. There were small amounts of bank erosion in all reaches, but no areas were considered severe. Many areas are healing, and erosion impacted a low percentage of all reaches. Therefore, bank erosion is not a serious concern at this time.

There are several concern areas with regard to the vegetation plots. The number of stems/acre in VP #1, 2, 4 and 5 remain below the Year 5 goal of 260 stems/acre. The stem/acre for VP #3 is 280 stems/acre.

Overall survivability from Year 1 to Year 2 was good (81% for all counted vegetation) despite the area being in a drought.

REFERENCES

ARCADIS G&M of North Carolina, Inc (ARCADIS). September 2002. Restoration Design Report, Unnamed Tributary to South Fork.

DeLorme. 1997. The North Carolina Atlas and Gazateer.

- Harman, W.H., et al. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams. AWRA Wildland Hydrology Symposium Proceedings. Edited by D.S. Olson and J.P. Potyondy. AWRA Summer Synposium. Bozeman, MT.
- North Carolina Ecosystem Enhancement Program. November 2006. *Content, Format and Data Requirements for EEP Monitoring Reports*.

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22: 166-169.

SEPI Engineering Group. 2006. UT to South Fork Final Monitoring Report, Year 1 of 5.

- U.S. Department of Agriculture, Soil Conversation Service. April 1960. Soil Survey Alamance County, North Carolina.
- U.S. Department of Army, Corps of Engineers. 2003. *Stream Mitigation Guidelines*. <u>http://www.saw.usace.army.mil/wetlands/Mitigation/stream mitigation.html</u>

Appendix A1

Photolog - Vegetation Problem Areas

APPENDIX A1 PHOTOLOG – UT SOUTH FORK (REACH 1)

PROBLEM AREAS (Vegetation)

Photo 1: Representative bank erosion problem area (17+60 along plan view).

Photo 3: Representative problem cross vane (20+94 along plan view).

Photo 2: Bank Undercut/Erosion (Jan 31 - IMG 5278 – Pts 837) (Station XX along plan view).

APPENDIX A1 PHOTOLOG – UT SOUTH FORK (REACH 2)

PROBLEM AREAS (Vegetation)

Photo 1: Bank Erosion (Station17+55 along plan view).

Photo 2: Bank Undercut/Erosion (Station 16+10 along plan view).

APPENDIX A1 PHOTOLOG – UT SOUTH FORK (REACH 3)

PROBLEM AREAS (Vegetation)

Photo 1: Bank Erosion (Station 11+30 along plan view).

Photo 2: Bank Undercut/Erosion (Station 11+65 along plan view).

Photo 3. Bank Erosion (Station 16+10) upstream of J-hook

Photo 4. Bank Erosion (Station 19+15 along plan view)

Appendix A2

Photolog - Vegetation Plots

APPENDIX A1 PHOTOLOG UT to SOUTH FORK

VEGETATION PLOTS

Photo 1: Vegetation Plot 1

Photo 3: Vegetation Plot 3

Photo 2: Vegetation Plot 2

Photo 4: Vegetation Plot 4

Photo 5: Vegetation Plot 5

Photo 6: Vegetation Plot 6

Monitoring Year 2 Photolog - Vegetation Plots

Photo 7: Vegetation Plot 7

Photo 9: Vegetation Plot 9

Photo 11: Vegetation Plot 11

Photo 8: Vegetation Plot 8

Photo 10: Vegetation Plot 10

Photo 12: Vegetation Plot 12

Appendix A3

Vegetation Data Tables

Feature/Issue	Station # / Range	Probable Cause	Photo #
Bare Bank			
Bare Bench	Reach 2 - 13+10 to 13+25		
Bare Flood Plain			
Invasive/Exotic			
Populations			

Table VII. Stem counts for each species arranged by plot - UT South Fork															
Species	Plots												Year 1	Year 2 Totals	Survival %
	1	2	3	4	5	6	7	8	9	10	11	12	Totals		
Shrubs															
Cornus ammomum						(LS 15)	0		1 (LS 1)	2 (LS 5)	(LS 5)	(LS 5)	3 (LS 31)	3 (LS 31)	100.0%
Salix nigra							1						1	1	100.0%
Trees															
Acer negundo							0				1		1	1	100.0%
Acer rubrum				5			1						7	6	85.7%
Betula nigra							2	2	1	11	3	8	31	27	87.1%
Carpinus caroliniana													2	0	0.0%
Diospyros virginiana						1	5	3	2	3	1	1	18	16	88.9%
Fraxinus pennsylvanica	3		4	1	3		8	10	13	16	2	3	70	63	90.0%
Symphoricarpos orbiculatus			3							1			4	4	100.0%
Juglans nigra									3	1		4	27	8	29.6%
Platanus occidentalis						10	13	1	1		2	3	32	30	93.8%
Sambucus canandensis					2								5	2	40.0%
Quercus michauxii									1	5	2	2	14	10	71.4%
Quercus sp.							1						1	1	100.0%
Quercus alba						2		5					10	7	70.0%
Ulmus americana							1				1	0	3	2	66.7%
Total including live stake	3	0	7	6	5	28	32	21	23	44	17	26	260	212	81.5%
Stems per acre	120	0	280	240	200	1120	1280	840	920	1760	680	1040	867	707	
Total exluding live stake	3	0	7	6	5	13	32	21	22	39	12	21	229	181	79.0%
Stems per acre	120	0	280	240	200	520	1280	840	880	1560	480	840	763	603	

Appendix B1

Photolog – Stream Problem Areas

APPENDIX B1 PHOTOLOG – UT SOUTH FORK (REACH 1)

PROBLEM AREAS

Photo 1: Representative grass aggradation problem area (13+88 along plan view).

Photo 2: Representative cattail aggradation problem area (20+38 along plan view).

Photo 3: Representative problem cross vane (20+94 along plan view). Monitoring Year 2 Photolog – Problem Areas (Reach 1)

Photo 4: Representative problem J-hook (14+12 along plan view).

Photo 5: Representative problem Root Wad (19+56 along plan view).

APPENDIX B1 PHOTOLOG – UT SOUTH FORK (REACH 2)

PROBLEM AREAS (Stream)

Photo 1: Representative grass aggradation problem area (11+12 along plan view).

Photo 2: Representative cattail aggradation problem area (10+78 along plan view).

Photo 3: Representative problem cross vane (20+22 along plan view).

Photo 4: Representative problem Root Wad (12+99 along plan view).

APPENDIX B1 PHOTOLOG – UT to SOUTH FORK (REACH 3)

PROBLEM AREAS (Stream)

Photo 1: Representative grass aggradation problem area (Station 12+66 along plan view).

Photo 2: Representative cattail aggradation problem area (Station 10+85 along plan view).

Appendix B2

Photolog – Cross-Sections & Photo Points

APPENDIX B2 PHOTOLOG – UT SOUTH FORK (REACH 1)

CROSS-SECTIONS & PHOTOPOINTS

Cross-Section 1: Looking Downstream

Cross-Section 2: Looking Downstream

Cross-Section 3: Looking Downstream

Monitoring Year 2 Photolog – Cross Sections & Photopoints (Reach 1)

Cross-Section 1: Looking Upstream

Cross-Section 2: Looking Upstream

Cross-Section 3: Looking Upstream

Appendix B2 Page 1 of 6

Cross-Section 4: Looking Downstream

Cross-Section 4: Looking Upstream

Photo point 1: Looking Upstream

Photo point 1: Looking Downstream

Photo point 1: Looking at Channel

Photo point 2: Looking Upstream

Photo point 2: Looking Downstream

Photo point 2: Looking at Channel

Photo point 3: Looking Upstream

Photo point 3: Looking Downstream

Photo point 3: Looking at Channel

Photo point 4: Looking Upstream

Photo point 4: Looking Downstream

Photo point 4: Looking at Channel

Photo point 5: Looking Upstream

Photo point 5: Looking Downstream

Photo point 5: Looking at Channel

Photo point 6: Looking Upstream

Photo point 6: Looking Downstream

Photo point 6: Looking at Channel

Photo point 7: Looking Upstream

Photo point 7: Looking Downstream

Photo point 7: Looking at Channel

Photo point 8: Looking Upstream

Photo point 8: Looking Downstream

Photo point 8: Looking at Channel

APPENDIX B2 PHOTOLOG – UT SOUTH FORK (REACH 2)

CROSS-SECTIONS & PHOTOPOINTS

Cross-Section 5: Looking Downstream

Cross-Section 6: Looking Downstream

Cross-Section 5: Looking Upstream

Cross-Section 6: Looking Upstream

Photo point 1: Looking Upstream

Photo point 1: Looking Downstream

Photo point 1: Looking at Channel

Photo point 2: Looking Upstream

Photo point 2: Looking Downstream

Photo point 2: Looking at Channel

Photo point 3: Looking Upstream

Photo point 3: Looking Downstream

Photo point 3: Looking at Channel

Photo point 4: Looking Upstream

Photo point 4: Looking Downstream

Photo point 4: Looking at Channel

Photo point 5: Looking Upstream

Photo point 5: Looking Downstream

Photo point 5: Looking at Channel

Photo point 6: Looking Upstream

Photo point 6: Looking Downstream

Photo point 6: Looking at Channel

Photo point 7: Looking Upstream

Photo point 7: Looking Downstream

Photo point 7: Looking at Channel

APPENDIX B2 PHOTOLOG – UT SOUTH FORK (REACH 3)

CROSS-SECTION & PHOTOPOINTS

Cross-Section 7: Looking Downstream

Cross-Section 8: Looking Downstream

Cross-Section 9: Looking Downstream

Cross-Section 7: Looking Upstream

Cross-Section 8: Looking Upstream

Cross-Section 9: Looking Upstream

Cross-Section 10: Looking Downstream

Cross-Section 10: Looking Upstream

Cross-Section 11: Looking Downstream

Cross-Section 11: Looking Upstream

Cross-Section 12: Looking Downstream

Cross-Section 12: Looking Upstream

Monitoring Year 2 Photolog – Cross-Sections & Photopoints (Reach 3) Appendix B2 Page 3 of 6

Photo point 1: looking upstream

Photo point 1: looking downstream

Photo point 1: looking at channel

Photo point 2: looking upstream

Photo point 2: looking downstream

Photo point 2: looking at channel

Photo point 3: looking upstream

Photo point 3: looking downstream

Photo point 3: looking at channel

Photo point 4: looking upstream

Photo point 4: looking downstream

Photo point 4: looking at channel

Photo point 5: looking upstream

Photo point 5: looking downstream

Photo point 5: looking at channel

Appendix B2 Page 6 of 6 Appendix B3

Stream Data Tables

	Table B2. Visual Morphologic	al Stability Ass	sessment			
	UT to South	Fork				
Feature Category	Metric (per As-built and reference baselines)	(1152 feet) (#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total
A. Riffles	1. Present	23	28	NA	82%	
	2. Armor stable	23	28	NA	82%	
	3. Facet grade appears stable	20	28	NA	71%	
	4. Minimal evidence of embedding/fining	14	28	NA	50%	
	5. Length appropriate	20	28	NA	71%	71%
B. Pools	1. Present	27	29	NA	93%	
	2. Sufficiently deep	26	29	NA	90%	
	3. Length appropriate	25	29	NA	86%	90%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	12	13	NA	92%	
	2. Downstream of meander (glide/inflection) centering	11	13	NA	85%	88%
D. Meanders	1. Outer bend in state of limited/controlled erosion	23	26	NA	88%	
	2. Of those eroding, # w/concomitant point bar formation	2	3	NA	67%	
	3. Apparent Rc within specifications	24	26	NA	92%	
	4. Sufficient floodplain access and relief	26	26	NA	100%	87%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	21/285	75%	
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	1/8	99%	87%
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	7/36	98%	98%
G. Vanes / J Hooks etc.	1. Free of back or arm scour	47	50	NA	94%	
	2. Height appropriate	50	50	NA	100%	
	3. Angle and geometry appear appropriate	49	50	NA	98%	
	4. Free of piping or other structural failures	35	50	NA	70%	91%
H. Wads and Boulders	1. Free of scour	5	8	NA	63%	
	2. Footing stable	4	8	NA	50%	56%

	Table B2. Visual Morphologica	al Stability Ass	sessment			
	UT to South	Fork				
Feature Category	Segment/Reach: 2	(1030 feet) (#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total
A. Riffles	1. Present	13	13	NA	100%	
	2. Armor stable	13	13	NA	100%	
	3. Facet grade appears stable	11	13	NA	85%	
	4. Minimal evidence of embedding/fining	5	13	NA	38%	
	5. Length appropriate	12	13	NA	92%	83%
B. Pools	1. Present	14	14	NA	100%	
	2. Sufficiently deep	14	14	NA	100%	
	3. Length appropriate	14	14	NA	100%	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	8	8	NA	100%	
	2. Downstream of meander (glide/inflection) centering	6	7	NA	86%	93%
D. Meanders	1. Outer bend in state of limited/controlled erosion	13	14	NA	93%	
	2. Of those eroding, # w/concomitant point bar formation	1	1	NA	100%	
	3. Apparent Rc within specifications	14	14	NA	100%	
	4. Sufficient floodplain access and relief	14	14	NA	100%	98%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	18/359	65%	
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	0/0	100%	82%
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	4/19	99%	99%
G. Vanes / J Hooks etc.	1. Free of back or arm scour	28	28	NA	100%	
	2. Height appropriate	28	28	NA	100%	
	3. Angle and geometry appear appropriate	28	28	NA	100%	
	4. Free of piping or other structural failures	25	28	NA	89%	97%
H. Wads and Boulders	1. Free of scour	7	11	NA	64%	
	2. Footing stable	10	11	NA	91%	77%

Table B2. Visual Morphological Stability Assessment UT to South Fork Segment/Reach: 3 (1028 feet) Total Number / Retric (per As-built and reference baselines) (#Stable) Number Performing as Intended Total Number / Ret in stable % Performing Condition Feature Performance Condition . Riffles 1. Present 15 16 NA 94%														
	UT to South	Fork												
Feature Category	Metric (per As-built and reference baselines)	(#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total								
A. Riffles	1. Present	15	16	NA	94%									
	2. Armor stable	15	16	NA	94%									
	3. Facet grade appears stable	12	16	NA	75%									
	4. Minimal evidence of embedding/fining	12	16	NA	75%									
	5. Length appropriate	13	16	NA	81%	84%								
B. Pools	1. Present	18	19	NA	95%									
	2. Sufficiently deep	14	19	NA	74%									
	3. Length appropriate	18	19	NA	95%	88%								
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	6	6	NA	100%	400%								
	2. Downstream of meander (glide/inflection) centering	1	1	NA	100%	100%								
D. Meanders	1. Outer bend in state of limited/controlled erosion	12	14*	NA	86%									
	2. Of those eroding, # w/concomitant point bar formation	2	2	NA	100%									
	3. Apparent Rc within specifications	14	14*	NA	100%									
	4. Sufficient floodplain access and relief	14	14*	NA	100%	97%								
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	15/201	80%									
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	0/0	100%	90%								
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	3/42	98%	98%								
G. Vanes / J Hooks etc.	1. Free of back or arm scour	30	30	NA	100%									
	2. Height appropriate	30	30	NA	100%									
	3. Angle and geometry appear appropriate	30	30	NA	100%									
	4. Free of piping or other structural failures	30	30	NA	100%	100%								
H. Wads and Boulders	1. Free of scour	10	10	NA	100%									
	2. Footing stable	10	10	NA	100%	100%								
"*" - Total number of n	neanders changed from Year 1 monitoring report based upo	on actual numbe	er of meanders	according to	Year 1 and Yea	ar 2 plan views.								

Fastura Issua	Station number	UT to South Fork, Reach 1	Photo
Feature Issue	Station numbers	Suspected Cause	Photo number
Aggradation (grass)	10+10	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass)	10+18		
88 martine (8 mart)	10+34	Channel possibly built too wide, naturally narrowing.	
J-hook	10+50	Piping around structure.	
J-nook J-hook	11+10		
		Loose center stone, structure may need extra stone and repositioning of center rock	
Aggradation (grass)	11+35	Channel possibly built too wide, naturally narrowing.	
J-hook	11+45	Angle of structure directing flow into outside of meander (right bank).	
Bank Erosion (right bank)	11+53	Angle of unstream i-hook is directing flow into unprotected bank and causing erosion	
Aggredation (gross)	11+57		
Aggradation (grass)	11+73	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass)	12+00	Channel possibly built too wide, naturally narrowing	
	12+10		
Aggradation (grass)	12+31 12+37	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass)	12+68	Channel possibly built too wide, naturally parrowing	
	12+79	enamer possioly built too wide, naturally narrowing.	
Aggradation (grass)	13+06 13+12	Area is "washing" out and aggradation now located downstream of j-hook.	
Aggradation (grass)	13+88	Channel possibly built too wide naturally parrowing	Photo 1
	14+00	Chainer possiory ount too wide, naturany natiowing.	
Aggradation (grass)	14+05 14+10	Fine sediment deposition in tail of pool just upstream of j-hook.	
J-hook	14+12	Piping around structure, may have been placed too high.	Photo 5
Aggradation (grass)	14+74	Channel possibly built too wide, naturally narrowing.	
Lhook	14+79	Dining/undermining of conterstone & conterstone loose	
J-nook Aggradation (grass)	14+80		
	14+93	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass)	15+09	Channel possibly built too wide, naturally narrowing.	
Rootwad	15+39	Structure exposed placed too high	
J-hook	15+69	Piping around structure.	
Aggradation (grass)	15+79	Channel possibly built too wide, naturally narrowing.	
Rootwad	16+18	Placed too high resulting in erosion and undercutting around structure	
Rootwad	15+81	Placed too high, resulting in crosion and undercutting around structure	
Aggradation (grass)	16+52	Channel possibly built too wide, naturally narrowing.	
I hook	16+75	Gan in structure (i.e. missing center rock)	
Aggradation (grass)	16+85		
	16+94	Channel possibly built too wide, naturally narrowing.	
J-hook	17+15	Missing center rock.	
Aggradation (grass)	17+36	Channel possibly built too wide, naturally narrowing.	
Bank Erosion (right bank)	17+58	Haaling over cause of old eracion was angle of unstream i hook	Photo 3
	17+62		1 11010 5
Aggradation (grass)	17+62	Channel possibly built too wide, naturally narrowing.	
Crossvane	18+39	Piping/undermining around center stone.	
Bank Erosion (right bank)	18+52	Ponding at high flows due to j-hook placement as well as piping causing scour of bank	
Lhook	18+54	upstream of structure.	
J-nook Bank Erosion (left bank)	18+33	instaned too nigh, ponding during nigh nows, piping b/t center stone bank.	
	18+73	Ponding upstream of j-hook at high flows as well as piping causing bank scour.	
J-hook	18+73	Installed too high, piping around center stone, loose center stone.	
Bank Erosion (both banks)	18+85	Section appears to be downcutting (i.e. incising), leaving weakened banks. The	
	18+93	downstream i-hook) that created a headcut.	
Bank Erosion (left bank)	18+95		
	18+97	Piping around j-hook causing bank scour directly upstream.	
J-hook	18+97	Installed too high, undermining/piping under structure causing scour.	
Dank Erosion (left bank)	19+05	Piping around j-hook causing bank scour/undercutting directly upstream.	
J-hook	19+10	Installed too high, undermining/piping under structure causing scour.	
Aggradation (grass)	19+22	Channel possibly built too wide, naturally narrowing.	
J-hook	19+40	Loose center stone, piping around structure	
Rootwad	19+56	Bank failing behind structure, possibly installed too high.	Photo 6
Aggradation (grass)	19+99	Channel possibly built too wide. naturally narrowing	
Aggradation (asttalla)	20+11		
Aggrauation (cattalis)	20+53	Cattails growing in fine sediment deposition of slack pool section.	Photo 2
Aggradation (grass)	20+53	Channel possibly built too wide naturally parrowing	1
<u> </u>	20+63		D1 · · ·
Urossvane Lebook	20+94	Priping around/underming of center stone, possibly installed too high.	Photo 4
0-11UUK	21+30		L

		IT to Conth Early Decol 2	
Faatura Issua	Station num	U1 to South Fork, Keach 2	Photo
reature issue	Station num	ivers Suspected Cause	number
Aggradation (grass)	10+11	Channel possibly built too wide, naturally parrowing	
	10+31	channel possibly built too wide, haturarly hartowing.	
Aggradation (cattails)	10+78	Channel possibly built too wide naturally parrowing	Photo 2
	11+05	enamer possibly built too wide; hattrany harrowing.	1 11010 2
Aggradation (grass)	11+12	Channel possibly built too wide naturally narrowing	Photo 1
	11+17	enamer possibly built too wide, hattarily hartowing.	i noto i
Crossvane	11+18		
		Piping around structure, pool behind structure filling in with sediment deposit on right side.	
Aggradation (grass)	11+24	Channel possibly built too wide, naturally narrowing.	
	11+26		
Aggradation (grass)	11+50	Channel possibly built too wide, naturally narrowing.	
	12+08		
Aggradation (grass & willows)	12+27	Channel possibly built too wide, naturally narrowing.	
	12+33		-
Aggradation (cattails)	12+38	Channel possibly built too wide, naturally narrowing.	
	12+66		
Aggradation (grass)	12+82	Channel possibly built too wide, naturally narrowing.	
	13+06		
Bank Erosion (right bank)	12+97		
	13+00	Flow directed into bank from structure directly upstream and rootwad inadequate to protect bank	k.
Rootwad (severe)	12+99	Exposed, installed too high, bank failures caving in and around structure.	Photo 5
Aggradation (cattails)	13+29	Channel possibly built too wide, naturally narrowing.	
	13+49		
Aggradation (grass)	13+87	Riffle narrowing, channel possibly built too wide, naturally narrowing.	
	14+02		
Rootwad	14+18	Some evidence of undercutting, possibly installed too high.	
Aggradation (grass)	14+24	Channel possibly built too wide, naturally narrowing.	
De stars 1	14+44	Deals 6 there exceed a terrations	
Rootwad	14+98	Bank failure around structure.	
Bank Erosion (right bank)	14+99	Possible improper installation of rootwads causing bank to cave in around structures, nowever	
Destroyd	15+02	Deals foilure around atmosture	
Koolwad A gave detien (eetteile)	15+29	Bank failure around structure.	
Aggradation (cattaits)	15+47	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass)	15+47		+
Aggradation (grass)	16+36	Channel possibly built too wide, naturally narrowing.	
Pauls Frazion (laft hank)	16+02		+
Bank Erosion (left bank)	16+10	Lack of protective vegetation and/or soil stability characteristics.	Photo 3
Aggradation (grass)	16+54		
Aggradation (grass)	16+82	Channel possibly built too wide, naturally narrowing.	
Bank Frasian (laft bank)	10+82		
Dalik Elosioli (lett Dalik)	17+49	Possibly unstable soil characteristics and/or lack of vegetation at a point of moderate shear stres	s
	17+54	(outside of slight meander). Channel may be naturally narrowing.	
Aggradation (cattails)	18+20		
aggradation (cattaits)	18+31	Channel possibly built too wide, naturally narrowing.	
Aggradation (cattails)	18+51		
Aggradation (cattans)	18+76	Channel possibly built too wide, naturally narrowing.	
Crossvane	18+56	Missing center rock.	
Aggradation (cattails)	19+27		
-BB- addition (currents)	19+32	Channel possibly built too wide, naturally narrowing.	
Aggradation (cattails)	19+43		1
-98	19+55	Channel possibly built too wide, naturally narrowing.	
Crossvane	20+22	Piping around structure.	Photo 4

		Table X. Stream Problem Areas	
		UT to South Fork, Reach 3	
Feature Issue	Station numbers	Suspected Cause	Photo number
Aggradation (cattails)	10+85 11+14	Channel possibly built too wide, naturally narrowing.	
Bank Erosion (Right Bank)	11+33 11+37	Soil type or lack of vegetation. Perhaps built too wide and is narrowing.	
Aggradation (cattails)	11+85 11+97	Channel possibly built too wide, naturally narrowing.	Photo 2
Aggradation (grass)	12+14 12+34	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass)	12+66 12+87	Channel possibly built too wide, naturally narrowing.	Photo 1
Aggradation (cattails)	13+30 13+33	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass)	13+56 13+60	Channel possibly built too wide, naturally narrowing.	
Aggradation (cattails)	13+79 13+84	Channel possibly built too wide, naturally narrowing.	
Aggradation (cattails)	14+01 14+11	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass)	15+31 15+39	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass & cattails)	15+39 15+69	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass)	15+69 15+83	Channel possibly built too wide, naturally narrowing.	
Aggradation (cattails)	16+06 16+26	Channel possibly built too wide, naturally narrowing.	
Bank Erosion (Left Bank)	16+13 16+26	Lack of protective vegetation and/or soil stability around structure on outside of meander.	
Aggradation (grass)	18+27 18+38	Channel possibly built too wide, naturally narrowing.	
Aggradation (grass)	18+81 18+90	Channel possibly built too wide, naturally narrowing.	
Bank Erosion (Left Bank)	19+19 19+44	Lack of protection on outside of meander in area of highest shear stress. J-hook placed too far downstream along meander. Area currently healing but needs additional protective measures t prevent future erosional events.	Photo 3
Aggradation (grass)	19+21 19+26	Channel possibly built too wide, naturally narrowing.	

				Table	e XII Ba	aseline	Morpholo	gy and Hyd	raulic Sum	ımary								
					UT to	South	Fork (Res	toration Sul	breach 1)									
						Р	roject Nu	mber 435										
Parameter	US	SGS Gage D	ata	Regiona	l Curve	Interval	Pre-l	Existing Con	dition	Project	Reference	Stream		Design			As-buil	.t
) (°	N .	N. 1	M	M	M. 1	NC.	N .	M. 1		1.4	N. 1	NC.	N 4	N. 1	M		INC. 1
Dimension	Min	Max	Mea	Min	Max	Med	Min	Max	Med	Min	Max	Mea	Min	Max	Med	Min	Max	Med
BF Width (ft)	28.00	30.00	29.00			1	3.00	3 40	3 20	6.50	10.00	8.00	N/A	N/A	9.40			
Floodprone Width (ft)	40.00	100.00	70.00				N/A	N/A	10.00	16.00	22.00	18.80	N/A	N/A	>33		<u> </u>	<u> </u>
BFCross Sectional Area (ft)	58.60	58.90	58.80				2.90	3.60	3.20	3.90	6.30	5.30	N/A	N/A	5.90			
BF Mean Depth (ft)	2.00	2.10	2.00				1.00	1.10	1.00	0.40	1.00	0.70	N/A	N/A	0.60			
Max Depth (ft)	2.70	3.00	2.90				1.00	1.80	1.40	0.90	1.40	1.10	0.80	1.30	1.00			
Width/Depth Ratio	13.00	15.00	14.00				N/A	N/A	3.00	7.00	26.00	13.50	N/A	N/A	15.00			
Entrenchment Ratio	1.30	3.60	2.40				2.90	3.30	3.10	2.00	3.40	2.40	N/A	N/A	>2.2			
Bank Height Ratio	N/A	N/A	N/A				0.60	3.10	1.80	1.40	2.50	1.80	N/A	N/A	1.00			
Wetted Perimeter (ft)	32.00	34.20	33.00				5.00	5.60	5.20	7.30	12.00	9.40	N/A	N/A	10.60			
Hydraulic radius (ft)	1.83	1.72	1.78				0.58	0.64	0.62	0.53	0.53	0.56	N/A	N/A	0.56			
Pattern																		
Channel Beltwidth (ft)	N/A	N/A	N/A				22.00	122.00	48.90	10.00	35.00	20.90	12.20	41.40	24.50			
Radius of Curvature (ft)	N/A	N/A	N/A				7.00	100.00	26.10	2.30	31.80	13.50	2.80	37.60	15.10			
Meander Wavelenght (ft)	N/A	N/A	N/A				21.00	282.00	136.70	35.00	70.00	50.00	41.40	82.80	59.30			
Meander Width Ratio	N/A	N/A	N/A				6.90	38.10	15.30	1.30	4.40	2.60	1.30	4.40	2.60			
Profile																		
Riffle length (ft)	N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Riffle slope (ft/ft)	N/A	N/A	N/A				0.01	0.03	0.02	0.02	0.08	0.04	0.01	0.04	0.02			
Pool length (ft)	N/A	N/A	N/A				3.80	27.60	11.70	7.00	27.00	14.50	8.50	32.00	16.90			
Pool spacing (ft)	N/A	N/A	N/A				23.20	165.60	75.40	17.00	63.00	36.50	19.80	74.30	43.30			
Substrate																		
d50 (mm)	N/A	N/A	N/A				N/A	N/A	13.00	N/A	N/A	4.50	N/A	N/A	N/A			
d84 (mm)	N/A	N/A	N/A				N/A	N/A	44.00	N/A	N/A	33.00	N/A	N/A	N/A			
Additional Reach Parameters																		
Valley Length (ft)	N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Channel Length (ft)	N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Sinuosity	N/A	N/A	N/A				N/A	N/A	1.22	N/A	N/A	1.40	N/A	N/A	1.26			+
Water Surface Slope (ft/ft)	N/A	N/A	0.00				N/A	N/A	0.01	N/A	N/A	0.02	N/A	N/A	0.01			
BF slope (ft/ft)	N/A	N/A	0.00				N/A	N/A	0.01	N/A	N/A	0.02	N/A	N/A	0.01			
Rosgen Classification	N/A	N/A	B/C				N/A	N/A	E 4/1	N/A	N/A	C/E 4/1	N/A	N/A	C/E 4/1			
*Habitat Index																		
*Macrobenthos																		

				Table 2	XII Bas	seline M	lorpholog	y and Hydi	raulic Sum	imary								
					UT to S	South F	ork (Rest	oration Sub	oreach 2)									
						Pro	oject Num	ber 435										
Parameter	US	SGS Gage D	ata	Reg	ionai Ci Interval	irve	Pre-E	xisting Cor	dition	Project	Reference	Stream		Design			As-buil ¹	t
) <i>(</i> :		N 1			N 1) <i>(</i> '	24				N 1		14		<u>хс</u>		
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	28.00	30.00	29.00	1			N/A	N/A	9.00	6.50	10.00	8.00	N/A	N/A	12 20			
Floodprone Width (ft)	40.00	100.00	70.00				N/A	N/A	68.00	16.00	22.00	18.80	N/A	N/A	>26.8		├───	+
BFCross Sectional Area (ft)	58.60	58.90	58.80				N/A	N/A	10.20	3.90	6.30	5.30	N/A	N/A	10.00			
BF Mean Depth (ft)	2.00	2.10	2.00				N/A	N/A	1.10	0.40	1.00	0.70	N/A	N/A	0.80			
Max Depth (ft)	2.70	3.00	2.90				1.00	2.10	1.50	0.90	1.40	1.10	1.00	1.60	1.30			
Width/Depth Ratio	13.00	15.00	14.00				N/A	N/A	8.00	7.00	26.00	13.50	N/A	N/A	15.00			
Entrenchment Ratio	1.30	3.60	2.40				N/A	N/A	7.60	2.00	3.40	2.40	N/A	N/A	>2.2			
Bank Height Ratio	N/A	N/A	N/A				N/A	N/A	1.70	1.40	2.50	1.80	N/A	N/A	1.00			
Wetted Perimeter (ft)	32.00	34.20	33.00				N/A	N/A	11.20	7.30	12.00	9.40	N/A	N/A	13.80			
Hydraulic radius (ft)	1.83	1.72	1.78				N/A	N/A	0.91	0.53	0.53	0.56	N/A	N/A	0.72			
Pattern																		
Channel Beltwidth (ft)	N/A	N/A	N/A				12.00	114.00	45.70	10.00	35.00	20.90	15.90	53.90	31.80			
Radius of Curvature (ft)	N/A	N/A	N/A				5.00	140.00	28.00	2.30	31.80	13.50	3.70	49.00	19.60		──	<u> </u>
Meander Wavelenght (ft)	N/A	N/A	N/A				40.00	172.00	87.90	35.00	70.00	50.00	53.90	107.80	77.20			
Meander Width Ratio	N/A	N/A	N/A				1.30	12.70	5.10	1.30	4.40	2.60	1.30	4.40	2.60			
Profile																		
Riffle length (ft)	N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Riffle slope (ft/ft)	N/A	N/A	N/A				0.00	0.08	0.03	0.02	0.08	0.04	0.01	0.05	0.03			
Pool length (ft)	N/A	N/A	N/A				3.80	27.60	12.40	7.00	27.00	14.50	11.00	41.60	22.00			
Pool spacing (ft)	N/A	N/A	N/A				12.90	75.90	35.40	17.00	63.00	36.50	25.70	96.80	56.30			
Substrate																		
d50 (mm)	N/A	N/A	N/A				N/A	N/A	13.00	N/A	N/A	4.50	N/A	N/A	N/A			
d84 (mm)	N/A	N/A	N/A				N/A	N/A	44.00	N/A	N/A	53.00	N/A	N/A	N/A			
Additional Reach Parameters																		
Valley Length (ft)	N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Channel Length (ft)	N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		1	
Sinuosity	N/A	N/A	N/A				N/A	N/A	1.27	N/A	N/A	1.40	N/A	N/A	1.58			
Water Surface Slope (ft/ft)	N/A	N/A	0.00				N/A	N/A	0.02	N/A	N/A	0.02	N/A	N/A	0.01			
BF slope (ft/ft)	N/A	N/A	0.00				N/A	N/A	0.02	N/A	N/A	0.02	N/A	N/A	0.01		1	
Rosgen Classification	N/A	N/A	B/C				N/A	N/A	E 4/1	N/A	N/A	C/E 4/1	N/A	N/A	C/E 4/1			
*Habitat Index																		
*Macrobenthos																		

Table XII Baseline Morphology and Hydraulic Summary UT to South Fork (Restoration Subreach 3)																			
					UT to	o South	Fork (Re	storat	tion Sul	breach 3)									
						ł	Project Nu	mber	r 435										
Parameter	U	SGS Gage I	Data	Region	nai Cu	rve	Pre-l	Existi	ng Cono	lition	Projec	t Reference	e Stream		Design			As-built	t
		1	•		ervai							1				1		1	
D ! !	Min	Max	Med	Min M	ax	Med	Min	Max		Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Dimension	N 20.00	20.00	20.00	<u>г г</u>	- 1			N T/ A		12.00	6.50	10.00	0.00		NT/ A	14.00	1	1	1
Eleadarone Width (f	t) 28.00	100.00	29.00				N/A N/A	N/A		25.00	0.50	10.00	19 90	N/A N/A	N/A N/A	14.00			
BECross Sectional Area (f	t) 40.00	58.90	58.80				N/A N/A	N/A N/A		25.00	3 00	6 30	10.00	N/A	N/A N/A	-50.0			
BF Mean Depth (f	t) 2.00	2.10	2.00				N/A	N/A		1.00	0.40	1.00	0.70	N/A	N/A	1.10			
Max Depth (f	t) 2.70	3.00	2.90				1.20		3.20	1.80	0.90	1.40	1.10	1.40	2.20	1.80			
Width/Depth Rati	0 13.00	15.00	14.00				N/A	N/A		12.00	7.00	26.00	13.50	N/A	N/A	13.00			
Entrenchment Rati	o 1.30	3.60	2.40				N/A	N/A		2.10	2.00	3.40	2.40	N/A	N/A	>2.2			
Bank Height Rati	o N/A	N/A	N/A				N/A	N/A		2.40	1.40	2.50	1.80	N/A	N/A	1.00			
Wetted Perimeter (f	t) 32.00	34.20	33.00				N/A	N/A		14.00	7.30	12.00	9.40	N/A	N/A	16.20			
Hydraulic radius (f	t) 1.83	1.72	1.78				N/A	N/A		0.86	0.53	0.53	0.56	N/A	N/A	0.93			
Pattern																			
Channel Beltwidth (f	t) N/A	N/A	N/A				19.00		77.00	39.70	10.00	35.00	20.90	4.00	56.00	22.00			
Radius of Curvature (f	t) N/A	N/A	N/A				11.00		46.00	22.20	2.30	31.80	13.50	4.00	56.00	22.00			
Meander Wavelenght (f	t) N/A	N/A	N/A				60.00		109.00	80.40	35.00	70.00	50.00	62.00	123.00	88.00			
Meander Width Rati	o N/A	N/A	N/A				1.60		6.40	3.30	1.30	4.40	2.60	1.30	4.40	2.60			
Profile																			
Riffle length (f	t) N/A	N/A	N/A				N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Riffle slope (ft/f	t) N/A	N/A	N/A				0.00		0.05	0.02	0.02	0.08	0.04	0.00	0.02	0.01			
Pool length (f	t) N/A	N/A	N/A				9.40		59.20	35.30	7.00	27.00	14.50	13.00	48.00	25.00			
Pool spacing (f	t) N/A	N/A	N/A				37.80		103.90	73.20	17.00	63.00	36.50	29.00	111.00	64.00			
Substrate																			
d50 (mn	n) N/A	N/A	N/A				N/A	N/A		13.00	N/A	N/A	4.50	N/A	N/A	N/A			
d84 (mn	n) N/A	N/A	N/A				N/A	N/A		45.00	N/A	N/A	53.00	N/A	N/A	N/A			
Additional Reach Parameters																			
Valley Length (f	t) N/A	N/A	N/A				N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Channel Length (f	t) N/A	N/A	N/A				N/A	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Sinuosi	v N/A	N/A	N/A				N/A	N/A		1.16	N/A	N/A	1.40	N/A	N/A	1.16			
Water Surface Slope (ft/f	t) N/A	N/A	0.00				N/A	N/A		0.01	N/A	N/A	0.02	N/A	N/A	0.01			
BF slope (ft/f	t) N/A	N/A	0.00				N/A	N/A		0.01	N/A	N/A	0.02	N/A	N/A	0.01			
Rosgen Classificatio	n N/A	N/A	B/C				N/A	N/A		E 4/1	N/A	N/A	C/E 4/1	N/A	N/A	C/E 4/1			
*Habitat Inde	x		-																
*Macrobentho	s																		

				Tab	le XII	Baselin	e Morpho	logy and H	ydraulic Su	ımmary								
					UT	to Sout	h Fork (R	estoration S	Subreach 4)								
							Project N	umber 435										
Parameter	US	SGS Gage I	Data	Regi	ional Ci Interval	urve	Pre-	Existing Co	ndition	Projec	ct Referenc	e Stream		Design		1	As-built	
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Dimension																		
BF Width (ft) 28.00	30.00	29.00				13.00	18.00	15.70	6.50	10.00	8.00			14.10			
Floodprone Width (ft) 40.00	100.00	70.00				21.00	200.00	82.00	16.00	22.00	18.80			>31.00			
BFCross Sectional Area (ft) 58.60	58.90	58.80				19.40	33.00	25.10	3.90	6.30	5.30			25.00			
BF Mean Depth (ft) 2.00	2.10	2.00				1.50	1.80	1.60	0.40	1.00	0.70			1.80			
Max Depth (ft) 2.70	3.00	2.90				1.60	2.90	1.90	0.90	1.40	1.10	2.30	3.50	2.80			
Width/Depth Ratio	13.00	15.00	14.00				9.00	11.00	10.00	7.00	26.00	13.50			8.00			
Entrenchment Ratio	1.30	3.60	2.40				1.60	11.10	4.40	2.00	3.40	2.40	N/A	N/A	>2.20			
Bank Height Ratio	N/A	N/A	N/A				0.60	2.10	1.90	1.40	2.50	1.80	N/A	N/A	1.00			
Wetted Perimeter (ft) 32.00	34.20	33.00				16.00	21.60	18.90	7.30	12.00	9.40	N/A	N/A	17.70			
Hydraulic radius (ft) 1.83	1.72	1.78				1.21	1.53	1.33	0.53	0.53	0.56	N/A	N/A	1.41			
Pattern																		
Channel Beltwidth (ft) N/A	N/A	N/A				27.00	151.00	56.10	10.00	35.00	20.90	18.40	62.20	36.80			
Radius of Curvature (ft) N/A	N/A	N/A				5.00	138.00	29.30	2.30	31.80	13.50	4.20	56.60	22.60			
Meander Wavelenght (ft) N/A	N/A	N/A				45.00	340.00	127.30	35.00	70.00	50.00	62.20	124.40	89.10			
Meander Width Ratio	N/A	N/A	N/A				1.70	9.60	3.60	1.30	4.40	2.60	1.30	4.40	2.60			
Profile																		
Riffle length (ft) N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Riffle slope (ft/ft) N/A	N/A	N/A				0.00	0.06	0.02	0.02	0.08	0.04	0.00	0.02	0.01			
Pool length (ft) N/A	N/A	N/A				15.90	197.30	67.80	7.00	27.00	14.50	12.70	48.10	25.40			í
Pool spacing (ft) N/A	N/A	N/A				34.60	280.60	121.60	17.00	63.00	36.50	29.70	111.70	65.00			[
Substrate	/																	
d50 (mm) N/A	N/A	N/A				N/A	N/A	2.00	N/A	N/A	4.50	N/A	N/A	N/A			
) N/A	N/A	N/A				N/A	N/A	30.00	N/A	N/A	53.00	N/A	N/A	N/A			<u> </u>
Additional Reach Parameters)																	
Valley Length (ft) N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			<u> </u>
Channel Length (ft) N/A	N/A	N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		—	
Sinuosit	/ N/A	N/A	N/A				N/A	N/A	1.23	N/A	N/A	1.4	N/A	N/A	1.23		—	
Water Surface Slope (ff/ff) N/A	N/A	0.00				N/A	N/A	0.01	N/A	N/A	0.02	N/A	N/A	0.01			<u> </u>
BF slope (ff/ff) N/A	N/A	0.00				N/A	N/A	1.01	N/A	N/A	1.02	N/A	N/A	1.01			
Rosgen Classification	n N/A	N/A	B/C				N/A	N/A	E 4/1	N/A	N/A	C/E 4/1	N/A	N/A	C/E 4/1			<u> </u>

*Habitat Index									
*Macrobenthos									

					T٤	able XI	II. Mo	rpholog	y and l	Hydrau	lic Mo	nitorin	ig Sumi	nary										
								UT t	o Sout	h Fork	Creek													
							Se	gment/R	leach:	1 (1140	linear	feet)												
Parameter		Cro	ss Sectio	on 1 Rif	fle			Cro	ss Sect	ion 2 Po	ool	,		Cros	s Secti	on 3 Ri	ffle			Cros	s Secti	on 4 Po	ol	
Dimension	MV1	MV2	MV3	MV4	MV5	MV+	MV1	MV2	I MV3	MV4	I MV5	IMV+	MV1	I MV2	MV3	MV4	I MV5	MV+	MV1	MY2	I MV3	MV4	IMV5	IMV-
BE Width (ft)	12.1	13.4					12.6	12.6					13.8	10.9		101 1 4			11 8	12 0			X/////////////////////////////////////	
Floodporne Width (ft)	99	100+					12.0 NA	NA					40+	35+					NA	NA			X	XIIII
BFCross Sectional Area (ft)	8.2	8.7					12.3	11.9					8.1	6.1					13.7	11.1				XIIII
BF Mean Depth (ft)	0.7	0.6					1.0	0.9					0.6	0.6					1.2	0.9				XIIII
Width/Depth Ratio	17.9	20.7					NA	NA		V			23.6	18.1				ŧ	NA	NA			V	XIIII
Entrenchment Ratio	8.5	7.5+					NA	NA					3.0+	3.2+					NA	NA				XIIII
Bank Height Ratio	1.0	1.0					NA	NA					1.0	1.0					NA	NA			VIIII	XIIII
Wetted Perimeter (ft)	50.5	15.6					13.6	14.1					14.9	14.2					12.3	14				XIIII
Hydraulic radius (ft)	0.4	0.5					0.9	0.8					0.5	0.4					1.1	0.8			V	XIIII
Substrate																								XIIII
d50 (mm)	sand	< 0.062					sand	< 0.062					sand	< 0.062					sand	< 0.062				XIIII
d84 (mm)	sand	15					sand	< 0.062					sand	< 0.062					sand	< 0.062				XIIII
													-		_				_					
Parameter	М	Y-01 (20	006)	MY	Y-02 (2007) M			Y-03 (20	08)	MY	-04 (20	009)	M	Y-05 (20	10)	M	Y+ (20	11)						
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Channel Beltwidth (ft)	8.9	51.8	20.7	17.7	63.6	24.8																		
Radius of Curvature (ft)	9.1	39.1	14.4	8.5	41.7	20.1																		
Meander Wavelenght (ft)	46.4	95.8	62.9	38.6	120	68.4																		
Meander Width Ratio	0.69	4.02	1.61	1.32	4.73	1.90			V															
Profile																								
Riffle length (ft)	2.6	61.1	8.9*	2.7	43.7	11.1																		
Riffle slope (ft/ft)	0.000	0.082	0.014*	0.002	0.113	0.023																		
Pool length (ft)	4.4	71.0	12.1*	5.6	46.6	13.8																		
Pool spacing (ft)	8.5	126.5	34.4*	6.4	72.2	25.7			XIIIII					XIIIIII										
Additional Reach Parameters														-										
Valley Length (ft)		925.9			925.1																			
Channel Length (ft)		1166.1			1140.1																			
Sinuosity		1.26			1.23																			
Water Surface Slope (ft/ft)		0.0098			0.0096																			
BF slope (ft/ft)		0.0094			0.0099																			
Rosgen Classification		C5			C6																			
*Habitat Index		NA		NA																				
*Macrobenthos		NA NA NA																						

"*" -- Values reported last year were averages instead of medians. The values have been changed to medians in MY-1 & MY-2 columns for the 2007 report.

Table XIII. Morphology and Hydraulic Monitoring Summary																			
						UT to	South F	ork Cree	ek										
					Segn	nent/Re	each: 2 (1022 line	ar feet)										
Parameter		Cr	oss Sectio	on 5 Poo	1			Cros	ss Sectio	on 6 Riff	fle								
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+							
BF Width (ft)	10.5	12.2					10.4	11.3											
Floodporne Width (ft)	NA	NA					50+	60+											
BFCross Sectional Area (ft)	11.4	13.7					12.1	11.0											
BF Mean Depth (ft)	1.1	1.1					1.2	1.0											
Width/Depth Ratio	NA	NA					9.0	11.5											
Entrenchment Ratio	NA	NA					4.8+	5.3+											
Bank Height Ratio	NA	NA					1.0	1.0											
Wetted Perimeter (ft)	39.0	13.8					12.3	11.9											
Hydraulic radius (ft)	0.6	1.0					1.0	0.9											
Substrate	1	<0.0(2					1	<0.0(2			 								
	sand	<0.062					sand	<0.062											
d84 (iiiii)	sanu	51					sand	50											
Parameter	М	Y-01 (20	06)	MY	-02 (20	07)	М	Y-03 (200)8)	MY	7-04 (20	09)	МҮ	-05 (20	10)	Ν	11)		
	10	<u>`</u>		26	, N	,))) (10	Ì		10	Ì		Mar Mari Mad			
Channel Deltwidth (ft)	Min 14.2	Max	Med 27.5	Min	Max 54.0	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	
Padius of Curvatura (ft)	7.0	45.5	27.3	5.2	J4.0	26.7													
Meander Wavelenght (ft)	7.9 56.6	45.5	24.0	54.4	45.5	20.7													
Meander Width Ratio	1 38	6.17	2.65	1 0	115.0	74.1													
Profile	1.50	0.17	2.05	1.7	7.0	2.7													
Riffle length (ft)	13	30.1	9.1*	19	467	11.6													
Riffle slope (ft/ft)	0.000	0.383	0.020*	0.000	0.133	0.015													
Pool length (ft)	7.0	53.0	20.6*	5.2	52.2	16.0													
Pool spacing (ft)	22.0	188.0	56.7*	7.2	77.6	26.2													
Additional Reach Parameters																			
Valley Length (ft)		906.9			905.5														
Channel Length (ft)	gth (ft) 1029.0				1022.4														
Sinuosity	1.1				1.1														
Water Surface Slope (ft/ft)	0.0081				0.0077														
BF slope (ft/ft)	0.0073				0.0074														
Rosgen Classification		C5			C6														
*Habitat Index		NA			NA														
*Macrobenthos		NA			NA														

"*" -- Values reported last year were averages instead of medians. The values have been changed to medians in MY-1 & MY-2 columns for the 2007 report.

Table XIII. Morphology and Hydraulic Monitoring Summary																																		
													U	Γ to So	uth For	k Creek																		
Segment/Reach: 3 (1024 linear feet)																																		
Parameter	Cross Section 7 Pool						Cross Section 8 Riffle						Cross Section 9 Riffle						Cross Section 10 Pool						Cross Section 11 Pool					Cross Section 12 Riffle				
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5 N	Y+ MY	(1 N	[Y2] M	Y3 MY	4 MY5 N	MY+ N	f Y1]	MY2 N	1Y3 MY	4 MY:	5 MY+
BF Width (ft)	12.4	11.9					12.2	14.4					15.3	14.2					15	17.4				11.	.2 1	1.2			1	5.9	14.4			Ň.
Floodporne Width (ft)	NA	NA					50+	50+					45+	45+					NA	NA				N/	A 1	VA				15+	45+			
BFCross Sectional Area (ft)	20.4	20.6					14	18.8					21.4	20.4					26.6	30.5				21	1	22			2	1.6	19.7			XIIII
BF Mean Depth (ft)	1.6	1.7					1.2	1.3					1.4	1.4					1.8	1.7				1.9	9 2	2.0				1.4	1.4			XIIII
Width/Depth Ratio	NA	NA					10.6	11.1					11.0	9.9					NA	NA				N/	A 1	NA 🖉			1	1.7	10.3			X//////
Entrenchment Ratio	NA	NA					3.2+	3.5+			X		3.2+	3.2+					NA	NA			Λ	N/	A 1	VA 🖉		XXX	3	.2+	3.1+			XIIII
Bank Heigh Ratio	NA	NA					1.0	1.0					1.0	1.0					NA	NA				N/	A 1	VA				1.0	1.0			XIIII
Wetted Perimeter (ft)	14.4	13.9					13.4	15.8					16.5	15.5					16.3	19.5				14.	.2 1	4.0			<u> </u>	7.6	15.6			XIIII
Hydraulic radius (ft)	1.4	1.5					1.0	1.2					1.3	1.3					1.4	1.6				1.6	6 :	1.6				1.3	1.3			XIIII
Substrate													I															4 4						¥
d50 (mm)	sand	< 0.062					sand	< 0.062	2				sand	1.6					sand	15				san	ıd 🗆	1.5			<u>//////s</u>	and	0.35			¥
	sand	11.3			<u>X////////////////////////////////////</u>		sand	26		<u>X////////////////////////////////////</u>	XIIIIIX		sand	13.7		XIIIIIX			sand	59			<u> XIIIIIXII</u>	san	ld	18	<u> X </u>	<u> X X </u>	////// s	and	8	<u> </u>		X///////
Parameter	MY-01 (2006)			MY-02 (2007)			MY-03 (2008)			MY-04 (2009)			MY	'-05 (20	010)	MY	MY+ (2011)																	
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med																
Channel Beltwidth (ft)	13.8	68.7	37.1	31.1	53.3	42.2					χ																							
Radius of Curvature (ft)	16.8	107.9	30.9	19.5	51.5	33.6																												
Meander Wavelenght (ft)	79.3	151.6	125.3	87.9	197.5	94.2																												
Meander Width Ratio	0.91	4.55	2.46	2.18	3.74	2.71																												
Profile																																		
Riffle length (ft)	2.1	40.9	12.0*	2.2	43.1	11.3																												
Riffle slope (ft/ft)	0.000	0.140	0.012*	0.000	0.162	0.015																												
Pool length (ft)	7.0	84.0	28.8*	11.0	83.0	23.9																												
Pool spacing (ft)	21.0	101.0	45.8	20.8	86.9	42.3					XIIIIIX				XIIIIII																			
Additional Reach Parameters																																		
Valley Length (ft)		862.4			863.4																													
Channel Length (ft)	1020.0			1023.8																														
Sinuosity	1.2			1.2																														
Water Surface Slope (ft/ft)	0.0046		0.0049																															
BF slope (ft/ft)	0.0036			0.0039																														
Rosgen Classification		C5		C5																														
*Habitat Index		NA		NA																														
*Macrobenthos	NA			NA					VIIII			V																						

"*" -- Values reported last year were averages instead of medians. The values have been changed to medians in MY-1 & MY-2 columns for the 2007 report.

Appendix B4

Stream Cross-Sections

	15 1 1 5 5 5	-
Field Crew:	IPJ and PDB	
Stream Reach:	1	
Drainage Area:	0.15	
Date:	Jan-06	
Monitoring Year	2	
STATION		NOTES
STATION (Feet)	ELEVATION (Fast)	NOTES
		Т
0.00	559.56	-
0.01	559.20	-
20.20	559.05	-
29.47	559.24	-
29.47	559.24	-
37.75	559.32	4
39.30	559.43	
40.58	559.51	IBKF
41.88	559.36	_
42.80	559.20	
43.60	559.02	
44.38	558.86	
45.03	558.37	
45.46	558.24	
45.74	557.91	
46.12	557.86	LEW
46.41	557.86	TW
46.69	557.86	REW
46.83	558.19	
47.76	558.00	
49.19	558.75	
50.60	559.19	
52.46	559.19	
56.59	559.73	
62.71	559.74	
76.44	560.27	
87.65	560.52	
94.87	560.59	1
99.74	560.98	1
99.78	561.36	1
		-

	B H Width (Feet)	ankfull/Top of Ban lydraulic Geometry Depth (Feet)	k / Area (Sq. Ft.)
	0.0	0.0	0.0
	1.3	0.2	0.1
	0.9	0.3	0.2
	0.8	0.5	0.3
	0.8	0.6	0.4
	0.6	1.1	0.6
	0.4	1.3	0.5
	0.3	1.6	0.4
	0.4	1.6	0.6
	0.3	1.6	0.5
	0.3	1.6	0.5
	0.1	1.3	0.2
	0.9	1.5	1.3
	1.4	0.8	1.6
	1.4	0.3	0.8
	1.9	0.3	0.6
	1.5	-0.2	0.1
TOTALS	13.4		8.7
10.ALO	10.7		0.1

SUMMARY DATA (BANKFULL)					
A(BKF)	8.7	W(FPA) 100+			
W(BKF)	13.4	Slope	0.010		
Max d	1.6				
Mean d	0.6	Area= A			
W/D	20.7	Width= W			
Entrenchment	7.5+	Depth=	D		
Stream Type	Type C Bankfull= BKF				
Area from Rural Region	6.2				

Field Crew: IPJ and PDB Stream Reach: 1 Drainage Area: 0.15 Date: Jan-06 Monitoring Year 2 STATION ELEVATION (Feet) NOTES 0.00 559.59 0.00 559.37 9.63 559.19 20.03 559.10 29.84 558.45 40.85 558.45 43.03 558.25 43.03 558.06 44.21 557.55 45.34 557.28	
Stream Reach: 1 Drainage Area: 0.15 Date: Jan-06 Monitoring Year 2 STATION (Feet) ELEVATION (Feet) NOTES 0.00 559.37 9.63 559.10 29.84 558.45 40.85 558.45 40.85 558.45 43.03 558.25 43.03 557.55 45.34 557.28	
Drainage Area: 0.15 Date: Jan-06 Monitoring Year 2 STATION ELEVATION NOTES (Feet) (Feet) NOTES 0.00 559.59 0.00 0.00 559.37 9.63 9.63 559.10 29.84 29.84 558.70 39.93 39.93 558.45 40.85 42.02 558.25 43.03 43.03 558.06 644.21 45.7.55 45.34 557.28	
Date: Jan-06 Monitoring Year 2 STATION ELEVATION NOTES (Feet) (Feet) 0.00 0.00 559.59 0.00 0.00 559.37 9.63 9.63 559.19 0.03 20.03 559.10 0.03 29.84 558.70 0.39.93 39.93 558.45 40.85 42.02 558.25 43.03 44.21 557.55 45.34	
Monitoring Year 2 STATION (Feet) ELEVATION (Feet) NOTES 0.00 559.59 0.00 0.00 559.37 9.63 9.63 559.19 0.00 29.84 558.70 39.93 39.93 558.45 40.85 40.85 558.40 BKF 42.02 558.25 43.03 44.21 557.55 557.28	
STATION (Feet) ELEVATION (Feet) NOTES 0.00 559.59 0.00 559.37 9.63 559.19 20.03 559.10 29.84 558.70 39.93 558.45 40.85 558.45 40.85 558.45 43.03 558.06 644.21 557.55 45.34 557.28 557.28	
STATION ELEVATION NOTES (Feet) (Feet) 0.00 559.59 0.00 559.37 9.63 559.19 20.03 559.10 29.84 558.70 39.93 558.45 40.85 558.40 42.02 558.25 43.03 558.06 44.21 557.55 45.34 557.28	
(Feet) (Feet) 0.00 559.59 0.00 559.37 9.63 559.19 20.03 559.10 29.84 558.70 39.93 558.45 40.85 558.40 42.02 558.25 43.03 558.06 44.21 557.55 45.34 557.28	
0.00 559.59 0.00 559.37 9.63 559.19 20.03 559.10 29.84 558.70 39.93 558.45 40.85 558.40 42.02 558.25 43.03 558.06 44.21 557.55 45.34 557.28	
0.00 559.37 9.63 559.19 20.03 559.10 29.84 558.70 39.93 558.45 40.85 558.40 42.02 558.25 43.03 558.06 44.21 557.55 45.34 557.28	
9.63 559.19 20.03 559.10 29.84 558.70 39.93 558.45 40.85 558.40 42.02 558.25 43.03 558.06 44.21 557.55 45.34 557.28	
20.03 559.10 29.84 558.70 39.93 558.45 40.85 558.40 42.02 558.25 43.03 558.06 44.21 557.55 45.34 557.28	
29.84 558.70 39.93 558.45 40.85 558.40 42.02 558.25 43.03 558.06 44.21 557.55 45.34 557.28	
39.93 558.45 40.85 558.40 BKF 42.02 558.25 3.03 43.03 558.06 44.21 457.55 45.34 557.28	
40.85 558.40 BKF 42.02 558.25 580.6 43.03 558.06 557.55 45.34 557.28	
42.02 558.25 43.03 558.06 44.21 557.55 45.34 557.28	
43.03 558.06 44.21 557.55 45.34 557.28	
44.21 557.55 45.34 557.28	
45.34 557.28	
45.52 557.05 LEW	
45.91 556.77	
47.67 556.33 TW	
49.10 556.64	
49.64 556.70	
50.23 556.72	
50.25 557.10 REW	
50.50 557.85	
51.72 557.99	
52.44 558.30 TOB	
55.88 558.62	
60.16 558.83	
70.03 559.14	
79.94 559.43	
90.08 559.68	
99.92 560.54	
99.98 560.95	

	-		
	1	Bankfull/Top of Bank	
	Width	Donth	Area
	(East)	(Epot)	(Sa Et)
			(3q . Fl.)
	0.0	0.0	0.0
	1.2	0.1	0.1
	1.0	0.3	0.2
	1.2	0.8	0.7
	1.1	1.1	1.1
	0.2	1.3	0.2
	0.4	1.6	0.6
	1.8	2.1	3.3
	1.4	1.8	2.7
	0.5	1.7	0.9
	0.6	1.7	1.0
	0.0	1.3	0.0
	0.3	0.5	0.2
	1.2	0.4	0.6
	0.7	0.1	0.2
	1.0		0.1
TOTALS	12.6		11.9
	SUMM	ARY DATA	
	A(BKF)	11.9	
	W(BKF)	12.6	
	Max d	2.1	
	Mean d	0.9	

Date: Monitoring Year	0.15 Jan-06 2					
STATION (Feet)	ELEVATION (Feet)	NOTES		ſ		E
0.00	554.02				Width	
0.03	553.45				(Feet)	
2.72	552.51	-			0.0	
4.13	552.11	-			0.1	
6.06	551.81	TOP			0.0	
6.63	551.96	LIOB			0.1	
7.40	551.94	-			1.2	
7.62	551.94	-			0.9	
8.71	551.50				1.3	
0.07	550.42				0.4	
0.00	540.74	-			0.5	
9.90	549.74				2.4	
12.20	549.71				17	
12.20	550.33	REW			1.7	
12.55	550.55			TOTAL S	10.6	-
14 29	550.53	-			10.0	-
16.34	551 13	-				
18.09	551.25	-				
19 15	551.58	BKF				
20.48	551.54					
21.66	551.92	-				
24.69	552.30	-				
32.27	552.83	1				
41.77	552.19	-				
44.90	552.11	-				
44.96	552.50					
		-	Г		SUMM	Ā
					A(BKF)
					W(BKF)
					Max	d
					Mean	d
				Cross Sec Poo	tion #4)	
555	:		·····			

Field Crew: Stream Reach: Drainage Area: Date: Monitoring Year	IPJ and PDB 2 0.38 Feb-07 2					
STATION	ELEVATION	NOTES]	Ва	nkfull/Top of Ba	ink
(Feet)	(Feet)			Hy	, draulic Geome	try
0.00	536.36			Width	Depth	Area
0.04	535.98			(Feet)	(Feet)	(Sq. Ft.)
4.04	535.43			. ,	. ,	,
10.23	535.01			0.0	0.0	0.0
18.32	534.61			1.7	0.3	0.3
22.56	534.52	тов		0.9	0.6	0.4
24.63	534.39	BKF		0.8	0.8	0.6
26.35	534.09			0.4	1.2	0.4
27.29	533.82			0.2	1.4	0.2
28.09	533.58			0.2	2.0	0.4
28.45	533.21			0.7	2.1	1.4
28.61	532.98	LEW		0.9	2.2	1.8
28.85	532.38			0.8	2.4	1.9
29.52	532.30			0.7	2.1	1.6
30.37	532.22			0.5	2.0	0.9
31.20	531.99	тw		0.5	1.3	0.8
31.93	532.28			0.2	1.2	0.2
32.39	532.41			0.8	1.2	1.0
32.86	533.04	REW		0.8	0.8	0.8
33.04	533.15			0.5	0.8	0.4
33.89	533.15			1.6		0.6
34.71	533.63		TOTALS	12.2		13.7
35.25	533.63					
37.33	534.61	тов				
41.42	535.02			SUMMA	RY DATA	
49.02	535.46			A(BKF)	13.7	
53.60	535.40			W(BKF)	12.2	
55.12	535.30			Max d	2.4	
55.16	535.78	1		Mean d	1.1	

	Ap	pen	dix	Β4
--	----	-----	-----	----

Stream Reach: 2 Drainage Area: 0.38 Date: Feb-06 Monitoring Year 2 STATION (Feet) ELEVATION (Feet) NOTES 0.00 534.76 0.005 534.34 8.36 533.04 17.11 533.36 22.15 533.27 22.15 533.27 22.15 533.27 22.15 533.27 22.15 533.27 22.558 532.07 27.03 531.61 28.77 531.62 30.19 531.02 30.19 531.02 30.69 531.57 32.75 531.62 35.64 532.74 37.18 532.95 40.91 533.18 50.53 533.413 59.80 534.13	Field Crew:	IPJ and PDB	
Drainage Area: 0.38 Feb-06 Monitoring Year NOTES STATION (Feet) ELEVATION (Feet) NOTES 0.00 534.76 Station 0.00 534.76 Station 0.015 534.34 Station 8.36 533.04 TOB 22.15 533.27 Z2.15 22.39 533.03 Z2.75 22.39 533.03 Z2.75 22.558 532.21 Z2.75 22.618 532.07 Z2.13 26.18 532.07 Z2.13 29.86 531.02 S31.14 30.19 531.57 S31.14 31.18 531.22 S3.64 32.75 531.62 S4.95 35.64 532.74 S3.18 50.53 533.13 TOB 97.35 533.13 S4.44 59.80 534.13 S54.13	Stream Reach:	2	
Date: Feb-06 Monitoring Year Feb-06 2 Monitoring Year 2 STATION (Feet) ELEVATION (Feet) NOTES 0.00 534.76 NOTES 0.005 534.34 S34.76 0.005 534.34 Reet) NOTES 21.15 533.27 Z2.15 S33.27 22.15 533.27 Z2.15 S32.27 22.558 532.31 Z64.18 S32.07 27.03 531.61 Z29.86 S31.13 29.86 531.02 S30.161 Z8.77 30.19 531.62 S31.57 TW 30.69 531.57 32.75 531.62 35.64 532.74 TOB TOB 40.91 533.18 TOB TOB 50.53 533.18 TOB TW 50.53 533.18 TOB TOB	Drainage Area:	0.38	
Monitoring Year 2 STATION (Feet) ELEVATION (Feet) NOTES 0.00 534.76 NOTES 0.005 534.34 A 8.36 533.04 TOB 17.11 533.36 533.04 22.15 533.27 TOB 22.15 533.27 22.15 23.39 533.03 533.03 24.78 532.62 25.58 25.58 532.11 26.18 26.18 532.07 27.03 27.03 531.61 22.9.66 28.77 531.25 23.01 29.86 531.02 30.19 30.53 531.14 31.18 31.18 531.22 35.64 32.75 531.62 33.49 37.18 532.95 40.91 40.91 533.18 50.53 59.80 534.13 59.80 59.80 534.44 59.99	Date:	Feb-06	
STATION (Feet) ELEVATION (Feet) NOTES 0.00 534.76 0.05 534.34 8.36 533.04 17.11 533.36 21.15 533.27 22.15 533.27 22.15 533.27 22.39 533.03 24.78 532.62 25.58 532.31 26.18 532.07 22.03 531.13 29.86 531.02 30.19 531.02 30.19 531.57 23.75 531.62 35.64 532.74 REW 31.69 531.57 32.75 531.62 33.64 532.74 TOB 35.053 533.13 169 531.57 35.64 532.74 TW 35.053 533.18 50.53 533.18 TOB 59.95 TOB	Monitoring Year	2	
STATION (Feet) ELEVATION (Feet) NOTES 0.00 534.76 0.05 <td< th=""><th></th><th></th><th></th></td<>			
(Feet) (Feet) 0.00 534.76 0.05 534.34 8.36 533.04 17.11 533.36 22.15 533.27 22.15 533.27 22.15 533.27 22.15 533.27 22.39 533.03 24.78 532.62 25.58 532.11 26.18 532.07 27.03 531.61 28.77 531.25 29.86 531.02 30.19 531.51 29.86 531.51 31.18 531.22 35.64 532.74 32.75 531.62 35.64 532.74 37.18 533.49 50.53 533.18 50.53 533.13 59.80 534.13 59.80 534.44	STATION	ELEVATION	NOTES
0.00 534.76 0.05 534.34 8.36 533.04 17.11 533.36 21.15 533.27 22.15 533.27 22.39 533.03 24.78 532.62 25.58 532.11 26.18 532.07 27.03 531.61 28.77 531.25 29.86 531.02 30.19 531.02 30.19 531.57 32.75 531.62 35.64 532.74 35.64 532.74 35.053 533.18 50.53 533.18 50.53 534.13 59.80 534.44	(Feet)	(Feet)	
0.05 534.34 8.36 533.04 17.11 533.36 21.15 533.27 22.15 533.27 22.15 533.27 22.15 533.27 22.15 533.27 22.15 533.27 22.15 533.27 22.15 533.27 25.58 532.31 26.18 532.07 27.03 531.61 28.66 531.02 30.19 531.02 30.19 531.57 32.75 531.62 35.64 532.74 37.18 532.74 30.53 533.18 50.53 533.18 50.53 534.13 59.80 534.44 50.90 534.44	0.00	534.76	
8.36 533.04 17.11 533.36 21.15 533.27 22.15 533.27 22.15 533.27 23.39 533.03 24.78 532.62 25.58 532.31 26.18 532.07 27.03 531.61 28.77 531.02 30.19 531.02 30.19 531.02 30.19 531.51 22.75 531.62 35.64 532.74 32.75 531.81 50.53 533.18 50.53 533.49 57.35 534.13 59.80 534.44	0.05	534.34	
17.11 533.36 21.15 533.27 22.15 533.27 23.39 533.03 24.78 532.62 25.58 532.31 26.18 532.07 27.03 531.61 28.77 531.25 29.36 531.02 30.19 531.02 30.19 531.22 31.69 531.14 31.18 531.22 35.64 532.74 35.64 532.74 35.3 533.18 50.53 533.49 57.35 534.13 59.80 534.44	8.36	533.04	
21.15 533.27 22.15 533.27 22.15 533.27 23.39 533.03 24.78 532.62 25.58 532.31 26.18 532.07 27.03 531.61 28.77 531.25 29.86 531.02 30.19 531.02 30.53 531.14 31.18 531.27 32.75 531.62 35.64 532.74 30.49 533.18 50.53 533.18 50.53 534.13 59.80 534.44 50.80 534.40	17.11	533.36	
22.15 533.27 TOB 23.39 533.03 532.62 24.78 532.62 532.62 25.58 532.31 531.61 26.18 532.07 531.61 28.77 531.25 533.03 29.86 531.02 30.19 30.53 531.14 84 31.18 531.22 TW 31.69 531.57 531.62 35.64 532.74 BKF 37.18 533.49 TOB 50.53 533.113 58.80 59.80 534.13 59.80	21.15	533.27	
23.39 533.03 24.78 532.62 25.58 532.31 26.18 532.07 27.03 531.61 28.77 531.25 29.36 531.13 29.86 531.02 30.19 531.02 30.53 531.14 31.18 531.22 35.64 532.74 35.64 532.74 35.64 533.18 50.53 533.14 59.80 534.13 59.80 534.43	22.15	533.27	TOB
24.78 532.62 25.58 532.31 26.18 532.07 27.03 531.61 28.77 531.25 29.86 531.02 30.19 531.02 30.53 531.14 31.18 531.27 32.75 531.62 35.64 532.74 30.53 533.18 50.53 533.18 50.53 533.18 50.53 534.13 59.80 534.44	23.39	533.03	
25.58 532.31 26.18 532.07 27.03 531.61 28.77 531.25 29.86 531.02 30.19 531.02 30.19 531.13 29.86 531.02 30.19 531.14 31.18 531.22 31.69 531.57 32.75 531.62 35.64 532.74 35.64 532.74 50.53 533.18 50.53 533.18 50.53 534.13 59.80 534.413	24.78	532.62	
26.18 532.07 27.03 531.61 28.77 531.25 29.36 531.13 29.86 531.02 30.19 531.02 30.53 531.14 31.69 531.57 32.75 531.62 35.64 532.74 35.64 532.74 30.53 533.18 50.53 533.49 57.35 534.13 59.80 534.43	25.58	532.31	
27.03 531.61 28.77 531.25 29.86 531.13 29.86 531.02 30.19 531.02 30.53 531.14 31.18 531.22 36.4 532.75 35.64 532.74 35.64 532.74 30.53 533.18 50.53 533.18 50.53 533.49 57.35 534.13 59.80 534.44	26.18	532.07	
28.77 531.25 LEW 29.36 531.13 29.86 531.02 30.19 531.02 TW 30.53 531.14 31.18 531.22 TW 31.69 531.57 32.75 531.62 535.64 532.74 BKF 37.18 532.95 TOB TOB 59.80 533.49 57.35 534.13 59.80 534.44 59.80 574.92	27.03	531.61	
29.36 531.13 29.86 531.02 30.19 531.02 30.53 531.14 31.18 531.22 31.69 531.57 32.75 531.62 35.64 532.74 35.64 532.74 50.53 533.18 50.53 533.49 57.35 534.13 59.80 534.42	28.77	531.25	LEW
29.86 531.02 30.19 531.02 30.53 531.14 31.18 531.22 31.69 531.57 32.75 531.62 35.64 532.74 36.4 532.74 40.91 533.18 50.53 533.49 57.35 533.49 59.80 534.13 59.80 534.44	29.36	531.13	
30.19 531.02 TW 30.53 531.14 531.22 REW 31.69 531.57 531.62 S6.64 S52.74 BKF 37.18 532.95 40.91 533.18 TOB TOB 59.80 534.13 S59.80 534.13 59.80 57.35 534.13 59.80 57.44 TOB 59.80 57.44 TOB 59.80 534.44 59.80 57.49 TOB 57.55 534.13 59.80 57.44 59.80 57.44 57.95	29.86	531.02	
30.53 531.14 31.18 531.22 31.69 531.57 32.75 531.62 35.64 532.74 37.18 532.95 40.91 533.18 50.53 533.49 57.35 534.13 59.80 534.44	30.19	531.02	TW
31.18 531.22 REW 31.69 531.57 32.75 531.62 35.64 532.74 BKF 37.18 532.95 TOB 40.91 533.18 50.53 50.53 533.49 55.834.13 59.80 534.13 56.444	30.53	531.14	
31.69 531.57 32.75 531.62 35.64 532.74 37.18 532.95 40.91 533.18 50.53 533.49 57.35 534.13 59.80 534.44 50.62 524.92	31.18	531.22	REW
32.75 531.62 35.64 532.74 37.18 532.95 40.91 533.18 50.53 533.49 57.35 534.13 59.80 534.44 50.92 524.92	31.69	531.57	
35.64 532.74 BKF 37.18 532.95 TOB 40.91 533.18 50.53 533.49 57.35 533.49 59.80 534.13 59.80 534.44 59.90 534.44	32.75	531.62	
37.18 532.95 TOB 40.91 533.18 50.53 533.49 57.35 534.13 59.80 534.44 50.02 534.44 50.92 534.44	35.64	532.74	BKF
40.91 533.18 50.53 533.49 57.35 534.13 59.80 534.44 50.82 534.42	37.18	532.95	TOB
50.53 533.49 57.35 534.13 59.80 534.44 50.2 534.42	40.91	533.18	
57.35 534.13 59.80 534.44 50.82 504.82	50.53	533.49	
59.80 534.44	57.35	534.13	
50.92 524.92	59.80	534.44	
534.8Z	59.82	534.82	

	Bankfull/Top of Bank Hydraulic Geometry					
	Width	Depth	Area			
	(Feet)	(Feet)	(Sq. Ft.)			
	0.0	0.0	0.0			
	0.5	0.1	0.0			
	0.8	0.4	0.2			
	0.6	0.7 0.3				
	0.9	1.1 0.8				
	1.7 1.5 2.3					
0.6 1.6 0.9						
	0.5	1.7 0.8				
	0.3	1.7 0.6				
	0.3	1.6 0.6				
	0.6	1.5 1.0				
	0.5	1.2 0.7				
	1.1	1.1	1.2			
	2.9 0.0 1.6					
TOTALS 11.3 11.0						
SUMMARY DATA (BANKFULL)						
A(BKF)	11.0	W(FPA)	60+			
W(BKF)	11.3	Slope	0.008			
Max d	1.7					
Mean d	1.0	Area= A				
W/D	11.5	Width= W				
Entrenchment	5.3+	Depth= D)			
Stream Type	<u> </u>	Bankfull= E	3KF			
Area from Rural Reg	jional Curv	/e	11.5			

]		Top of Ban	k			
	Hydraulic Geometry					
	Width	Depth	Area			
	(Feet)	(Feet)	(Sq. Ft.)			
	0.0	0.0	0.0			
	1.2	0.3	0.2			
	0.8	0.4	0.3			
	0.6	0.7	0.3			
	0.9	0.9	0.7			
	1.7	1.3	1.9			
	0.6	1.5	0.8			
	0.5	2.1	0.9			
	0.3	2.2	0.7			
	0.3	2.3	0.8			
	0.6	2.5	1.6			
	0.5	2.2	1.2			
	1.1	2.1	2.3			
	2.9	1.5	5.2			
	1.5	1.4	2.2			
TOTALS	13.6		19.2			
	SUMMARY DATA (TOB)					
		A	19.2			
		W	13.6			
		Max d	2.5			
		Mean d	1.4			

Field Crew:	IP.I and PDB	1				
Stream Reach	3					
Drainage Area:	1 05					
Date:	lan-07					
Monitoring Year	2					
monitoring rout	-	1				
STATION	ELEVATION	NOTES]	Ва	nkfull/Top of Ba	ink
(Feet)	(Feet)			Hy	draulic Geome	ry
0.00	530.00]		Width	Depth	Area
-0.03	529.54	1		(Feet)	(Feet)	(Sq. Ft.)
14.87	529.68	1				
21.00	529.77	тов		0.0	0.0	0.0
22.54	528.74	1		0.1	0.1	0.0
23.63	527.48	LEW		1.1	1.4	0.8
24.60	526.95	1		1.0	1.9	1.6
25.13	526.61	1		0.5	2.2	1.1
25.66	526.22	1		0.5	2.6	1.3
26.59	525.90	1		0.9	2.9	2.6
27.82	525.75	TW		1.2	3.1	3.7
29.02	526.21			1.2	2.6	3.5
30.00	526.51			1.0	2.3	2.4
31.07	527.50	REW		1.1	1.3	2.0
31.42	528.03			0.3	0.8	0.4
34.31	528.85	BKF		2.9	0.0	1.2
36.74	528.81		TOTALS	11.9		20.6
39.47	529.48	ТОВ	-			
45.05	529.70					
48.33	530.78			SUMMA	RY DATA	
49.74	531.31]		A(BKF)	20.6	
49.74	531.63]		W(BKF)	11.9	
		-		Max d	3.1	
				Mean d	1.7	

Field Crew:	IPJ and PDB	1
Stream Reach:	3	
Drainage Area:	1.05	
Date:	Jan-07	
Monitoring Year	2	
		-
STATION	ELEVATION	NOTES
(Feet)	(Feet)	
0.00	531.24	
0.00	530.64]
2.91	529.94	
4.43	530.14	1
5.06	529.86	
9.98	529.34	1
15.28	529.39]
17.24	529.35	ТОВ
21.07	528.79	BKF
23.16	528.22	
24.58	527.69	1
26.20	526.31]
26.53	526.09	
26.92	525.97	TW
27.61	526.06	
28.40	526.32	
30.08	526.76	
31.47	527.84	
32.75	527.92	
36.50	529.11	
38.92	529.60	тов
45.50	529.77	
50.00	530.64	
50.00	530.99]

ſ	l Width	Bankfull/Top of Bank Hydraulic Geometry Denth	Area
	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.0
	2.1	0.6	0.6
	1.4	1.1	1.2
	1.6	2.5	2.9
	0.3	2.7	0.8
	0.4	2.8	1.1
	0.7	2.7	1.9
	0.8	2.5	2.1
	1.7	2.0	3.8
	1.4	0.9	2.1
	1.3	0.9	1.2
	2.7		1.2
TOTALS	14.4		18.8
S111			
A(BKE)	18.8	W(FPA)	50+
W(BKE)	14.4	Slope	0.005
Max d	2.8	0.000	0.000
Mean d	1.3	Area= A	4
W/D	11.1	Width= V	Ň
Entrenchment	3.5+	Depth= [)
Stream Type	C	Bankfull= B	BKF
Area from Rural Reg	ional Cun	ie in the second s	22.7

	Top of Bank						
	Hyd	Iraulic Geon	netry				
	Width	Depth	Area				
	(Feet)	(Feet)	(Sq. Ft.)				
	0.0	0.0	0.0				
	3.8	0.6	1.1				
	2.1	1.1	1.8				
	1.4	1.7	2.0				
	1.6	3.0	3.8				
	0.3	3.3	1.0				
	0.4	3.4	1.3				
	0.7	3.3	2.3				
	0.8	3.0	2.5				
	1.7	2.6	4.7				
	1.4	1.5	2.8				
	1.3	1.4	1.9				
	3.7	0.2	3.1				
	1.1		0.1				
TOTALS	20.4		28.5				
	<u> </u>		28.5				
		Ŵ	20.4				
		Maxd	34				
		Mean d	1.4				
		mound					

Field Crew:	IPJ and PDB	
Stream Reach:	3	
Drainage Area:	1.05	
Date:	Jan-07	
Monitoring Year	2	
STATION	ELEVATION	NOTES
(Feet)	(Feet)	
0.00	529.30	
0.01	528.58	
3.32	528.31	
7.48	528.32	TOB
9.87	528.09	BKF
12.68	527.17	
13.45	526.76	
14.50	525.98	LEW
14.88	525.42	
16.66	525.54	TW
19.11	525.88	REW
20.93	526.89	
22.89	527.62	
24.74	528.36	
27.01	528.96	TOB
30.51	529.17	
35.37	529.02	
42.43	529.77	
44.78	529.98	
44.82	530.34	

E	Bankfull/Top of Ban Hydraulic Geometr	ık y		
Width	Depth	Area		
(Feet)	(Feet)	(Sq. Ft.)		
0.0	0.0	0.0		
2.8	0.9	1.3		
0.8	1.3	0.9		
1.0	2.1	1.8		
0.4	2.7	0.9		
1.8	2.6	4.7		
2.5	2.2	5.8		
1.8	1.2	3.1		
2.0	0.5	1.6		
1.2		0.3		
14.2		20.4		
	ATA (BANKEULL)			
20.4	W/EDA)	45+		
1/ 2	Slope	0.005		
27	Siope	0.005		
1.4	Area=	Δ		
9.9	Width= W			
3.2+	Depth= D			
C	Bankfull=	BKF		
ional Curv	e	22.7		
	E Width (Feet) 0.0 2.8 0.8 1.0 0.4 1.8 2.5 1.8 2.0 1.2 14.2 20.4 14.2 20.4 14.2 2.7 1.4 9.9 3.2+ 2.0 2.0,0 2.4 2.7 1.4 9.9 2.2 2.7 1.4 9.9 2.2 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	Bankfull/Top of Bar Hydraulic Geometr Width (Feet) 0.0 0.0 2.8 0.9 0.8 1.3 1.0 2.1 0.4 2.7 1.8 2.6 2.5 2.2 1.8 1.2 2.0 0.5 1.2 14.2 20.4 W(FPA) 14.2 Slope 2.7 1.4 9.9 Width= 3.2+ Depth= Depth= Cirve		

Hv	Top of Bank Hydraulic Geometry					
Width	Depth	Area				
(Feet)	(Feet)	(Sq. Ft.)				
0.0	0.0	0.0				
2.4	0.2	0.3				
2.8	1.2	1.9				
0.8	1.6	1.0				
1.0	2.3	2.0				
0.4	2.9	1.0				
1.8	2.8	5.1				
2.5	2.4	6.4				
1.8	1.4	3.5				
2.0	0.7	2.1				
1.8		0.6				
17.2		24.0				
<u>SL</u>	IMMARY DA	TA (TOB				
	A	24.0				

TOTALS

SUMMARY DATA (TOB)					
A	24.0				
W	17.2				
Max d	2.9				
Mean d	1.4				

Field (Stream Draina Date: Monito	Crew: n Reach: age Area: oring Year	IPJ and PDB 3 1.05 Jan-07 2								
s	STATION	ELEVATION	NOTES	[Bankfull				
	(Feet)	(Feet)	-		Hyd	Iraulic Geomet	try			
	0.00	528.74	_		Width	Depth	Area			
	0.00	528.14	_		(Feet)	(Feet)	(Sq. Ft.)			
	1.82	527.69	_							
	10.04	527.28	-		0.0	0.0	0.0			
	11.68	527.55			1.0	0.2	0.1			
	14.98	527.26	тов		1.5	0.7	0.6			
	17.67	527.28	_		2.6	1.3	2.5			
	20.19	526.61	_		2.3	2.2	4.0			
	21.66	526.32	_		0.5	2.5	1.1			
	23.17	525.86	_		0.0	2.8	0.0			
	25.74	525.21	_		0.9	3.1	2.7			
	28.00	524.33	_		0.7	3.4	2.2			
	28.45	524.05	LEOW		2.0	3.2	6.7			
	28.45	523.72	_		1.6	3.1	5.0			
	29.36	523.46	_		0.2	2.5	0.6			
	30.04	523.11	TW		1.1	1.6	2.2			
	32.05	523.27	_		1.0	1.3	1.5			
	33.61	523.38	_		1.2	0.6	1.1			
	33.81	523.99	REOW	ļ	1.0	0.0	0.3			
	34.88	524.95		TOTALS	17.4		30.5			
	35.91	525.21								
	37.07	525.93								
	38.09	526.52	BKF							
	39.09	526.75	тов		SUMN	IARY DATA				
	42.93	526.58			A(BKF)	30.5				
	47.72	526.52	_		W(BKF)	17.4				
	50.00	527.06			Max d	3.4				
	50.00	527.35			Mean d	1.7				
	520			Cross S	ection #10 (U Pool	JT South For	k)			
	529									
	528	•								
_				\rightarrow	:	:	:		:	
et)	527			>	<u></u>	Ba	ankfull	••••••••••••••••••••••••••••••••••••••		
(fe		:		1	· · ·	-:		<u>+</u> — — •	+	
E	526				·······		4			
tio		:	:	:		\sim	:	: /	:	
eva 🗌	525	:	:	1	-		:	1	:	:
Ele	525 7						1			
				-			. /		-	
	524					·				

50

Distance (feet)

523 -

0

Field Crew:	IPJ and PDB	1				
Stream Reach:	3					
Drainage Area:	1.05					
Date:	Jan-07					
Monitoring Year	2					
STATION		NOTES	Г	Ba	nkfull/Top of Pa	nk
(East)	(East)	NOTES			draulia Coome	tink ten c
(Feet)	(Feet)	1		Пу	draulic Geomer	try Anna
0.00	527.40	-		wiath	Depth	Area
-0.01	527.04	4		(Feet)	(Feet)	(Sq. Ft.)
1.31	526.46	-				
6.28	526.06	4		0.0	0.0	0.0
12.98	525.82			1.5	0.7	0.5
19.88	525.66	тов		0.9	1.2	0.8
22.24	525.11			-0.1	1.9	-0.2
24.69	523.93			1.1	2.8	2.5
25.56	523.41	LEW		2.7	3.4	8.3
25.44	522.74			1.9	3.0	6.0
26.52	521.82			0.7	2.3	1.8
29.17	521.19	тw		0.7	1.1	1.1
31.05	521.64	1		2.0	0.0	1.1
31.74	522.27		TOTALS	11.2		22.0
32.39	523.50	REW	-			
34.41	524.62	BKF				
36.62	525.81	тов		SUMMA	RY DATA	
43.55	526.09	1		A(BKF)	22.0	
46.37	526.31	1		W(BKF)	11.2	
49.69	527.09	1		Max d	3.4	
49.71	527.42	1		Mean d	2.0	

Area (Sq. Ft.)

> 0.0 1.6 1.9 2.1 3.4 0.9 2.3 2.5 0.9 0.4 3.3 0.4 0.0 19.7

45+ 0.005

22.7

Field Crew: Stream Reach: Drainage Area: Date: Monitoring Year	IPJ and PDB 3 1.05 Jan-07 2					
STATION	ELEVATION	NOTES	Γ		Bankfull	
(Feet)	(Feet)				Hydraulic Geometry	/
0.00	527.77			Width	Depth	
0.07	527.25			(Feet)	(Feet)	(
3.57	526.61					
8.78	526.15			0.0	0.0	
17.93	525.97			2.7	1.2	
19.85	525.77	TOB		1.3	1.8	
21.91	525.42	BKF		1.1	2.2	
24.62	524.23			1.5	2.4	
25.87	523.62			0.4	2.6	
26.94	523.22	LEW		0.9	2.7	
28.42	523.06			1.0	2.5	
28.78	522.79			0.4	2.2	
29.64	522.76	TW		0.2	1.7	
30.63	522.94			3.0	0.5	
31.01	523.23	REW		1.4	0.1	
31.19	523.73			0.8		
34.15	524.89		TOTALS	14.4		
35.52	525.35		-			
37.41	525.57	TOB	SU	MMARY I	DATA (BANKFULL)	
41.58	525.51		A(BKF)	19.7	W(FPA)	
43.99	525.74		W(BKF)	14.4	Slope	
45.05	525.98		Max d	2.7		
45.19	526.45		Mean d	1.4	Area=	A
			W/D	10.5	Width=	W
			Entrenchment	3.1+	Depth=	D
			Stream Type	С	Bankfull=	BKF
			Area from Rural Reg	ional Cur	ve	
			Cross Sect	ion #12 (Riffl	(UT Sout Fork) e	

		Top of Bank					
	Hyo	draulic Geon	netry				
	Width	Depth	Area				
	(Feet)	(Feet)	(Sq. Ft.)				
	0.0	0.0	0.0				
	0.8	0.1	0.1				
	2.7	1.3	2.0				
	1.3	2.0	2.1				
	1.1	2.4	2.3				
	1.5	2.5	3.6				
	0.4	2.8	1.0				
	0.9	2.8	2.4				
	1.0	2.6	2.7				
	0.4	2.3	0.9				
	0.2	1.8	0.4				
	3.0	0.7	3.7				
	1.4	0.2	0.6				
	1.9	0.0	0.2				
TOTALS	16.3		22.0				
	SU	MMARY DA	TA (TOB)				
		A	22.0				
		W	16.3				
		Max d	2.8				
		Mean d	1.3				

Stream Longitudinal Profile

Longitudinal Profile Overlay (Years 1 & 2) UT to South Fork - Reach 1 **Elevation (feet)** 553 552 Channel Distance (feet) Thalweg Year 1
Left Bankfull Year 2
Left Top of Bank Year 2
Thalweg Year 2 ---- Water Surface Year 2 Right Bankfull Year 2
Right Top of Bank Year 2

Appendix B5

Stream Pebble Counts

PEBBLE	E COUNT			00	-	-	
Site: UT So	outh Fork			SS	E	ור	
Party: IPIS				ENGIN	JEERING	GROUP	G
	XFDD						
Date: 10/15	/07			PA		OUNT	
Inches	Particle	Millimeters		CS 1	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	40	40	78%	78%
	Very Fine	.062125			0	0%	78%
	Fine	.12525	s v		0	0%	78%
	Medium	.2550			0	0%	78%
	Coarse	.50-1.0		1	1	2%	80%
.0408	Very Coarse	1.0-2		1	1	2%	82%
.0816	Very Fine	2.0-4.0	\square		0	0%	82%
.1622	Fine	4-5.7			0	0%	82%
.2231	Fine	5.7-8			0	0%	82%
.3144	Medium	8-11.3			0	0%	82%
.4463	Medium	11.3-16		1	1	2%	84%
.6389	Coarse	16-22.6		2	2	4%	88%
.89-1.26	Coarse	22.6-32		1	1	2%	90%
1.26-1.77	Very Coarse	32-45		5	5	10%	100%
1.77-2.5	Very Coarse	45-64			0	0%	100%
2.5-3.5	Small	64-90			0	0%	100%
3.5-5.0	Small	90-128			0	0%	100%
5.0-7.1	Large	128-180	\Box \angle		0	0%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024			0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	51	100%	100%

PEBBLE	E COUNT			00			
Site: UT So	outh Fork			(- C.	H I		
				20			6
Party: IPJ 8	& PDB			ENGIN	JEERING	GROUP	íð.
Date: 10/15	/07				ARTICLE C	OUNT	
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	49	49	98%	98%
	Very Fine	.062125			0	0%	98%
	Fine	.12525	s v		0	0%	98%
	Medium	.2550			0	0%	98%
	Coarse	.50-1.0			0	0%	98%
.0408	Very Coarse	1.0-2			0	0%	98%
.0816	Very Fine	2.0-4.0	\square		0	0%	98%
.1622	Fine	4-5.7			0	0%	98%
.2231	Fine	5.7-8			0	0%	98%
.3144	Medium	8-11.3			0	0%	98%
.4463	Medium	11.3-16			0	0%	98%
.6389	Coarse	16-22.6			0	0%	98%
.89-1.26	Coarse	22.6-32			0	0%	98%
1.26-1.77	Very Coarse	32-45			0	0%	98%
1.77-2.5	Very Coarse	45-64			0	0%	98%
2.5-3.5	Small	64-90			0	0%	98%
3.5-5.0	Small	90-128			0	0%	98%
5.0-7.1	Large	128-180	\Box \angle		0	0%	98%
7.1-10.1	Large	180-256			0	0%	98%
10.1-14.3	Small	256-362			0	0%	98%
14.3-20	Small	362-512			0	0%	98%
20-40	Medium	512-1024	L BOOLDER Z	1	1	2%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	50	100%	100%

PEBBLE	E COUNT			00	-		
Site: UT So	outh Fork			SS	E		
Party: IPJ &	PDB			ENGIN	VEERING	GROUP	68
Date: 10/15	/07			PA		OUNT	
Inches	Particle	Millimeters		CS 3	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	47	47	94%	94%
	Very Fine	.062125			0	0%	94%
	Fine	.12525	s s		0	0%	94%
	Medium	.2550			0	0%	94%
	Coarse	.50-1.0			0	0%	94%
.0408	Very Coarse	1.0-2			0	0%	94%
.0816	Very Fine	2.0-4.0	\bigcirc	1	1	2%	96%
.1622	Fine	4-5.7		1	1	2%	98%
.2231	Fine	5.7-8		1	1	2%	100%
.3144	Medium	8-11.3			0	0%	100%
.4463	Medium	11.3-16	A V		0	0%	100%
.6389	Coarse	16-22.6			0	0%	100%
.89-1.26	Coarse	22.6-32			0	0%	100%
1.26-1.77	Very Coarse	32-45			0	0%	100%
1.77-2.5	Very Coarse	45-64			0	0%	100%
2.5-3.5	Small	64-90			0	0%	100%
3.5-5.0	Small	90-128			0	0%	100%
5.0-7.1	Large	128-180			0	0%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024			0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	50	100%	100%

PEBBLE	PEBBLE COUNT			00	-	~ *	
Site: UT So	outh Fork			SS	EI	21	
Party: IPJ &	& PDB			ENGIN	VEERING	GROUP	Ε.
Date: 10/15	/07			PA		OUNT	
Inches	Particle	Millimeters		CS 4	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	50	50	98%	98%
	Very Fine	.062125			0	0%	98%
	Fine	.12525	S V		0	0%	98%
	Medium	.2550			0	0%	98%
	Coarse	.50-1.0			0	0%	98%
.0408	Very Coarse	1.0-2			0	0%	98%
.0816	Very Fine	2.0-4.0			0	0%	98%
.1622	Fine	4-5.7			0	0%	98%
.2231	Fine	5.7-8			0	0%	98%
.3144	Medium	8-11.3			0	0%	98%
.4463	Medium	11.3-16			0	0%	98%
.6389	Coarse	16-22.6			0	0%	98%
.89-1.26	Coarse	22.6-32			0	0%	98%
1.26-1.77	Very Coarse	32-45	L '		0	0%	98%
1.77-2.5	Very Coarse	45-64			0	0%	98%
2.5-3.5	Small	64-90			0	0%	98%
3.5-5.0	Small	90-128		1	1	2%	100%
5.0-7.1	Large	128-180			0	0%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024	L BOULDER Z		0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	51	100%	100%

PEBBLE	PEBBLE COUNT			00		-	
Site: UT So	uth Fork			C-C.	H'I		
				20			
Party: IPJ 8	PDB			ENGIN	JEERING	GROUP	la.
Data: 10/15	/07			DA			
Date. 10/15	/07						
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	35	35	69%	69%
	Very Fine	.062125			0	0%	69%
	Fine	.12525	S S		0	0%	69%
	Medium	.2550			0	0%	69%
	Coarse	.50-1.0			0	0%	69%
.0408	Very Coarse	1.0-2			0	0%	69%
.0816	Very Fine	2.0-4.0	\frown		0	0%	69%
.1622	Fine	4-5.7			0	0%	69%
.2231	Fine	5.7-8			0	0%	69%
.3144	Medium	8-11.3		1	1	2%	71%
.4463	Medium	11.3-16		2	2	4%	75%
.6389	Coarse	16-22.6			0	0%	75%
.89-1.26	Coarse	22.6-32		1	1	2%	76%
1.26-1.77	Very Coarse	32-45		3	3	6%	82%
1.77-2.5	Very Coarse	45-64		3	3	6%	88%
2.5-3.5	Small	64-90		1	1	2%	90%
3.5-5.0	Small	90-128			0	0%	90%
5.0-7.1	Large	128-180		4	4	8%	98%
7.1-10.1	Large	180-256		1	1	2%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024			0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS>	51	100%	100%

PEBBLE	E COUNT			00			
Site: UT So	outh Fork				H I		
				20			
Party: IPJ &	PDB			U ENGIN	JEERING	GROUP	(B
Date: 10/15	/07			PA		OUNT	
Inches	Particle	Millimeters		CS 6	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	32	32	63%	63%
	Very Fine	.062125			0	0%	63%
	Fine	.12525	s s		0	0%	63%
	Medium	.2550			0	0%	63%
	Coarse	.50-1.0			0	0%	63%
.0408	Very Coarse	1.0-2			0	0%	63%
.0816	Very Fine	2.0-4.0	\square		0	0%	63%
.1622	Fine	4-5.7			0	0%	63%
.2231	Fine	5.7-8			0	0%	63%
.3144	Medium	8-11.3			0	0%	63%
.4463	Medium	11.3-16		2	2	4%	67%
.6389	Coarse	16-22.6	È È	2	2	4%	71%
.89-1.26	Coarse	22.6-32		9	9	18%	88%
1.26-1.77	Very Coarse	32-45		4	4	8%	96%
1.77-2.5	Very Coarse	45-64			0	0%	96%
2.5-3.5	Small	64-90			0	0%	96%
3.5-5.0	Small	90-128		2	2	4%	100%
5.0-7.1	Large	128-180	\Box \angle		0	0%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024			0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	51	100%	100%

PEBBLE COUNT				00		-	
Site: UT So	uth Fork			C-C.	H I		
				20			
Party: IPJ &	PDB			ENGIN	IEERING	GROUP	6
Date: 10/15	/07			PA		OUNT	
Inches	Particle	Millimeters		CS 7	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	36	36	64%	64%
	Very Fine	.062125			0	0%	64%
	Fine	.12525	s s		0	0%	64%
	Medium	.2550			0	0%	64%
	Coarse	.50-1.0		2	2	4%	68%
.0408	Very Coarse	1.0-2		3	3	5%	73%
.0816	Very Fine	2.0-4.0	$\square \bigcirc$	1	1	2%	75%
.1622	Fine	4-5.7		2	2	4%	79%
.2231	Fine	5.7-8			0	0%	79%
.3144	Medium	8-11.3		3	3	5%	84%
.4463	Medium	11.3-16		1	1	2%	86%
.6389	Coarse	16-22.6		1	1	2%	88%
.89-1.26	Coarse	22.6-32		1	1	2%	89%
1.26-1.77	Very Coarse	32-45		2	2	4%	93%
1.77-2.5	Very Coarse	45-64			0	0%	93%
2.5-3.5	Small	64-90		2	2	4%	96%
3.5-5.0	Small	90-128		2	2	4%	100%
5.0-7.1	Large	128-180			0	0%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024			0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	56	100%	100%

PEBBLE	E COUNT			00		-	
Site: UT So	outh Fork			(- C.	H'I		
				20			
Party: IPJ &	Party: IPJ & PDB			ENGIN	JEERING	GROUP	íð.
Date: 10/15	/07			PA		OUNT	
Inches	Particle	Millimeters		CS 8	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	29	29	56%	56%
	Very Fine	.062125			0	0%	56%
	Fine	.12525	s		0	0%	56%
	Medium	.2550			0	0%	56%
	Coarse	.50-1.0			0	0%	56%
.0408	Very Coarse	1.0-2		4	4	8%	63%
.0816	Very Fine	2.0-4.0	$\square \bigcirc$	1	1	2%	65%
.1622	Fine	4-5.7		2	2	4%	69%
.2231	Fine	5.7-8			0	0%	69%
.3144	Medium	8-11.3		1	1	2%	71%
.4463	Medium	11.3-16			0	0%	71%
.6389	Coarse	16-22.6		4	4	8%	79%
.89-1.26	Coarse	22.6-32		5	5	10%	88%
1.26-1.77	Very Coarse	32-45		2	2	4%	92%
1.77-2.5	Very Coarse	45-64		3	3	6%	98%
2.5-3.5	Small	64-90			0	0%	98%
3.5-5.0	Small	90-128		1	1	2%	100%
5.0-7.1	Large	128-180			0	0%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024	L BOOLDER Z		0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	52	100%	100%

PEBBLE	PEBBLE COUNT			00			
Site: UT So	uth Fork				H'I		
				20	ا نا		
Party: IP I &				ENGIN	JEERING	GROUP	10
Date: 10/15	/07			PA		OUNT	
				CS 9			
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	14	14	28%	28%
	Very Fine	.062125			0	0%	28%
	Fine	.12525			0	0%	28%
	Medium	.2550	N N		0	0%	28%
	Coarse	.50-1.0		3	3	6%	34%
.0408	Very Coarse	1.0-2		13	13	26%	60%
.0816	Very Fine	2.0-4.0		4	4	8%	68%
.1622	Fine	4-5.7		1	1	2%	70%
.2231	Fine	5.7-8		4	4	8%	78%
.3144	Medium	8-11.3		2	2	4%	82%
.4463	Medium	11.3-16		2	2	4%	86%
.6389	Coarse	16-22.6		3	3	6%	92%
.89-1.26	Coarse	22.6-32			0	0%	92%
1.26-1.77	Very Coarse	32-45		1	1	2%	94%
1.77-2.5	Very Coarse	45-64		1	1	2%	96%
2.5-3.5	Small	64-90			0	0%	96%
3.5-5.0	Small	90-128		1	1	2%	98%
5.0-7.1	Large	128-180	\Box	1	1	2%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024	ROOLDER /		0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	50	100%	100%

PEBBLE	COUNT			00	-		
Site: UT So	uth Fork			C-C.	H' I		
				20			
Party: IPJ &	PDB			U ENGIN	IEERING	GROUP	(a
Date: 10/16	/07			PA		OUNT	
Inches	Particle	Millimeters		CS 10	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	3	3	6%	6%
	Very Fine	.062125			0	0%	6%
	Fine	.12525	s v		0	0%	6%
	Medium	.2550		1	1	2%	8%
	Coarse	.50-1.0		1	1	2%	9%
.0408	Very Coarse	1.0-2		8	8	15%	25%
.0816	Very Fine	2.0-4.0	\square	1	1	2%	26%
.1622	Fine	4-5.7		2	2	4%	30%
.2231	Fine	5.7-8		1	1	2%	32%
.3144	Medium	8-11.3		4	4	8%	40%
.4463	Medium	11.3-16		8	8	15%	55%
.6389	Coarse	16-22.6	Ě	2	2	4%	58%
.89-1.26	Coarse	22.6-32		6	6	11%	70%
1.26-1.77	Very Coarse	32-45		4	4	8%	77%
1.77-2.5	Very Coarse	45-64		5	5	9%	87%
2.5-3.5	Small	64-90		5	5	9%	96%
3.5-5.0	Small	90-128			0	0%	96%
5.0-7.1	Large	128-180	\Box \angle	2	2	4%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024			0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	53	100%	100%

PEBBLE COUNT			00			2	
Site: UT So	uth Fork			(-C)	F.I		
				20	ا نا		
Party: IP.I &				ENGIN	JEERING	GROUP	
Date: 10/16	/07			PA		OUNT	
				CS 11		_	
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	20	20	38%	38%
	Very Fine	.062125			0	0%	38%
	Fine	.12525			0	0%	38%
	Medium	.2550			0	0%	38%
	Coarse	.50-1.0			0	0%	38%
.0408	Very Coarse	1.0-2		14	14	26%	64%
.0816	Very Fine	2.0-4.0		1	1	2%	66%
.1622	Fine	4-5.7			0	0%	66%
.2231	Fine	5.7-8		5	5	9%	75%
.3144	Medium	8-11.3		3	3	6%	81%
.4463	Medium	11.3-16			0	0%	81%
.6389	Coarse	16-22.6		2	2	4%	85%
.89-1.26	Coarse	22.6-32			0	0%	85%
1.26-1.77	Very Coarse	32-45		1	1	2%	87%
1.77-2.5	Very Coarse	45-64			0	0%	87%
2.5-3.5	Small	64-90			0	0%	87%
3.5-5.0	Small	90-128		2	2	4%	91%
5.0-7.1	Large	128-180		4	4	8%	98%
7.1-10.1	Large	180-256			0	0%	98%
10.1-14.3	Small	256-362		1	1	2%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024			0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	53	100%	100%

*Year 1 data not available.

PEBBLE COUNT			00			1	
Site: UT So	uth Fork				F.I		
				20	Ŀı		
Borty IDIS				C ENGIN	IEERING	GROUP	
	x FDB						
Date: 10/16	/07			PA		OUNT	
				CS 12			
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	24	24	48%	48%
	Very Fine	.062125			0	0%	48%
	Fine	.12525			0	0%	48%
	Medium	.2550	N N	2	2	4%	52%
	Coarse	.50-1.0		5	5	10%	62%
.0408	Very Coarse	1.0-2		6	6	12%	74%
.0816	Very Fine	2.0-4.0	\frown	3	3	6%	80%
.1622	Fine	4-5.7		1	1	2%	82%
.2231	Fine	5.7-8		1	1	2%	84%
.3144	Medium	8-11.3		2	2	4%	88%
.4463	Medium	11.3-16		2	2	4%	92%
.6389	Coarse	16-22.6		1	1	2%	94%
.89-1.26	Coarse	22.6-32			0	0%	94%
1.26-1.77	Very Coarse	32-45		1	1	2%	96%
1.77-2.5	Very Coarse	45-64			0	0%	96%
2.5-3.5	Small	64-90		1	1	2%	98%
3.5-5.0	Small	90-128		1	1	2%	100%
5.0-7.1	Large	128-180			0	0%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024			0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	50	100%	100%

*Year 1 data not available.

Appendix C

Plan View Sheets

		PROJECT REFERE	NCE NO.	SHEET NO.
	(PI	435		3
	┛┻╴┻		PROJECT ENGINE	ER
	RING GROUP			
1025 WADE AVENUE RALEIGH, NC 27605				
TEL: 919-789-9977	FAX: 789-9591			
10 0	30			
SCALE				
P	PHOTO JINT *8	END I UT TO REACH STA.2	MONITOR.) SOUTH +40,13	I <u>NG</u> FORK
UT TO RI	SOU EAC	TH H 1	FO	RK
	LOCATION			
~	LUGATION:			
	QTDEA	M MONITOP		
	SIREA		TING - 1	
	PROJ #:		COUNTY:	
	435		ÁLA	ANCE
osystem.	PREPARED BY:			
incement	IPJ			
	CHECKED BY:		DATE:	
PROGRAM	PDB		4/02	2/07

	PROJECT REFERENCE NO.	SHEET NO.
	435	4
	PROJECT ENGINI	ER
ENGINEERING GROUP		
1025 WADE AVENUE RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
SCALE		
	•	

	T	PROJECT REFERENCE	10.	SHEET NO.
		435		6
		PROJEC	T ENGINEER	
1025 WADE AVENUE				
RALEIGH, NC 27605 TEL: 919-789-9977	FAX: 789-9591			
	30			
SCALE				
\mathcal{Q}				
(\setminus)				
7				
FND	MONITORI	VG		
$\int UT$	TO SOUTH	FORK		
REA	CH 2	÷		
STA.	20+22 . 36			
and the second sec				
7				
PHOTO/ POINT #7				
			_	
UT TO S	SOU	TH F	$\cap \mathbb{R}$	K
		<u> </u>	∽ п (
RF		12		
		л <i>М</i>		
	100477011-			
~	LOCATION:	TO SOUTH FOR		eκ
	STREA	M MONITORING	i - YE	AR 2
	PROJ #: 435	COU		
system				
Joy Stolling	IPJ			
PROCEAM	CHECKED BY:	DA	TE:	
P ROOM AND	PDB		4/02/	07 I

	PROJECT REFERENCE NO.	SHEET NO.
	435	7
	PROJECT ENGINI	EER
ENGINEERING GROUP		
1025 WADE AVENUE		
RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
10 0 20		
SCALE		

UT TO SOUTH FORK REACH 3

~	UT TO S	SOUTH FORK CREEK DNITORING - YEAR 2
	PROJ #: 435	COUNTY: ALAMANCE
osystem	PREPARED BY: IPJ	
PROGRAM	CHECKED BY: PDB	DATE: 3/30/07

		PROJECT REFERENCE NO.	SHEET NO.
	ノIC	435	8
		PROJECT ENGIN	EER
	GROUP		
1025 WADE AVENUE			
RALEIGH, NC 27605 TEL: 919-789-9977 FAX:	789-9591		
10 0	30		
SCALE			

UT TO SOUTH FORK REACH 3

	LOCATION:	
7	UT TC	D SOUTH FORK CREEK
	STREAM	MONITORING - YEAR 2
	PROJ #: 435	COUNTY: ALAMANCE
DSVSTEEM	PREPARED BY:	
incement	IPJ	
PROGRAM	CHECKED BY:	DATE:
	PDB	3/05/07

CODDI	PROJECT REFERENCE NO.	SHEET NO.
	435	1
	PROJECT ENGIN	EER
ENGINEERING GROUP		
1025 WADE AVENUE RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
10 0 30		
SCALE		

\sim SHEET SEE MATCH LINE

UT TO SOUTH FORK REACH 1

LOCATION:	
UT	TO SOUTH FORK CREEK
VEGETA	FION ASSESSMENT - YEAR 2
PROJ #:	COUNTY:
435	ALAMANCE

MONITORED BY: IPJ

CHECKED BY: PDB DATE: 4/25/07

CCDI		PROJECT REFERENCE NO.	SHEET NO.
	\mathbf{P}	435	2
		PROJECT ENGINE	ER
1025 WADE AVENUE	ang Group		
RALEIGH, NC 27605 TEL: 919-789-9977	FAX: 789-9591		
10 0	30		
SCALE			
2/			
5			
7			
,			
7			
	\setminus		
	\	(r ⁰	
		15	
	A		
	ed ⁷ sa		
and the second sec	8	-1	
- A- service			
		\5_	
2		\'A	
		$\langle \cdot \rangle$	
VEGE	TATION	\backslash	
	5 "1		
1			
/.			
	SOU	´ ` F(()	KK I
		4 \/ 4	
		HT 1	
ТЛТ			
	LOCATION:		
~	UT	TO SOUTH FORK C	REEK
	VEGETA	TION ASSESSMENT	- YEAR 2
	PPO.1 #•	COLINITY -	
	435	ALAN	IANCE
osystem	MONITORED BY		
ncement		IPJ	
	CHECKED BY:	DATE:	
PROGRAM		PDB 4/2	5/07

	C		PROJECT REF	ERENCE NO.	SHEET NO.
		', M I	4:	PROJECT ENGINE	3 FR
	ENGINERI	RING GROUP		FROJECT ENGINE	
	1025 WADE AVENUE				
	TEL: 919-789-9977	7 FAX: 789-9591			
	10 0	30			
	SCALE				
			END UT REA STA	<u>MONITOR</u> TO SOUTH CH I .2I+40J3	ING I FORK
JT	TO S RE	SOU I ACH	ЪН [1]	FOR	.K
		LOCATION:			
		UT	TO SOUT	H FORK C	REEK
		VEGETA	TION ASS	ESSMENT	- YEAR 2
		PROJ #:		COUNTY:	
Octof	01111	435		ALA	
USYSL		MONITORED BY:	IPJ		
ancei	nent	CHECKED BY		DATE	
PRO	GRAM	UNEUKED BT:	PDB	4/2	25/07

	PROJECT REFERENCE NO.	SHEET NO.
	435	4
	PROJECT ENGINI	ER
ENGINEERING GROUP		
1025 WADE AVENUE		
RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
10 0 30		
SCALE		

\mathbb{UT}	\mathbb{TO}	SOUTI	FORK	
	$\mathbb R$	EACH	2	

UT TO SOUTH FORK CREEK				
VEGETATION ASSESSMENT - YEAR				
PROJ #:	COUNTY:			
435	ALAMANCE			
MONITORED BY:	TP.I			

DATE: 4/25/07

		PROJECT REFERENCE NO.	SHEET NO.
	(P)	435	6
		PROJECT ENGINI	ER
1025 WADE AVENUE	MING GROUP		
RALEIGH, NC 27605 TEL: 919-789-9977	5 7 FAX: 789-9591		
10 0	30		
SCALE			
\frown			
$\sum_{i=1}^{n}$			
•			
END	MONITORI	NG	
	IO SOUTH	FORK	
REA STA	00+22 36		
J STA	.20722.30		
-1			
- [
· %			
	י זר היוראו		
TO SO	U'I'H	IFORK	
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-
REA(CH	2	
	<u>с т т</u>		
	LOCATION:		
~~	UT	TO SOUTH FORK C	
	VEGETA	TION ASSESSMENT	- YEAR 2
	PROJ #: 435	COUNTY:	MANCE
osystem	MONITORED BY:		
ncement		IPJ	
PROGRAM	CHECKED BY:	PDB DATE:	5/07
		4/2	

	PROJECT REFERENCE NO.	SHEET NO.	
	435	7	
	PROJECT ENGINEER		
ENGINEERING GROUP			
1025 WADE AVENUE			
RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591			
10 0 30			
SCALE			

UT TO SOUTH FORK REACH 3

PROJ #:	435	COUNTY: 5 ALAMANCE						
VEG	BETA	LION	I ASS	SESS	SMEN	г -	YEAR	2
	ШΤ	тο	SOUT	не	OBK	CR	FEK	

PROJ #: 435

MONITORED BY: IPJ

CHECKED BY: PDB DATE: 4/25/07

	PROJECT REFERENCE NO.	SHEET NO.			
КНРГ	435	8			
	PROJECT ENGINEER				
ENGINEERING GROUP					
1025 WADE AVENUE RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591					
SCALE					

v	EGETA	TIO	N ASSE	SSMEN	Г-	YEAR	2	
	UT	т0	SOUTH	FORK	CRI	EEK		

